A SHORT PROOF OF FAN'S FIXED POINT THEOREM

FRODE TERKELSEN

ABSTRACT. Fan's fixed point theorem for multivalued functions in locally convex spaces is proved by means of Brouwer's fixed point theorem and the concept of a partition of unity.

Let X and Y be topological spaces, and let 2^{Y} denote the set of subsets of Y. A function $T: X \rightarrow 2^{Y}$ (called a multivalued function of X into Y) is upper semicontinuous if for each $x_0 \in X$ and each neighborhood W of $T(x_0)$ in Y, there exists a neighborhood V of x_0 in X such that $x \in V$ implies $T(x) \subset W$. We shall give a short proof of Fan's fixed point theorem for multivalued functions, modifying a method of Browder [1].

THEOREM (K. FAN [2]). Let K be a nonempty compact convex subset of a Hausdorff locally convex topological vector space E, and let $T: K \rightarrow 2^K$ be an upper semicontinuous function such that T(x) is nonempty closed and convex for each $x \in K$. Then there exists $x_0 \in K$ with $x_0 \in T(x_0)$.

PROOF. Let $\{U_i: i \in I\}$ denote a neighborhood base at 0 in *E* consisting of open convex circled sets. For each $i \in I$ there exists a finite set $\{x_{ij}: j \in J(i)\} \subset K$ with $K \subset \bigcup_{i \in J(i)} (x_{ij} + U_i)$. There exists a continuous partition of unity subordinate to this covering, i.e. for $j \in J(i)$ there are continuous functions $\alpha_{ij}: K \to R$ with $\alpha_{ij}(x) \ge 0$ for $x \in K$, $\alpha_{ij}(x) = 0$ for $x \notin x_{ij} + U_i$, and $\sum_{i \in J(i)} \alpha_{ij}(x) = 1$ for $x \in K$. Choose $y_{ij} \in T(x_{ij})$ arbitrarily, and define the function $f_i: K \to E$ by $f_i(x) = \sum_{j \in J(i)} \alpha_{ij}(x)y_{ij}$. The convex hull C_i of $\{y_{ij}: j \in J(i)\}$ is homeomorphic to a Euclidean ball, with $C_i \subset K$ and $f_i(C_i) \subset C_i$. By Brouwer's fixed point theorem we may choose $x_i \in C_i$ such that $f_i(x_i) = x_i$.

The neighborhood base $\{U_i: i \in I\}$ is directed by \supset . Let $x_0 \in K$ be a cluster point of the corresponding net $\{x_i: i \in I\}$ in K, and suppose $x_0 \notin T(x_0)$. By separation there is a closed convex neighborhood W of $T(x_0)$ with $x_0 \notin W$. Since T is upper semicontinuous there exists a neighborhood V of x_0 with $V \cap W = \emptyset$ such that $x \in V \cap K$ implies $T(x) \subset W$. Choose $m \in I$ with $U_m + U_m \subset V - x_0$. There exists an $i \in I$ with $U_m \supset U_i$ such that $x_i \in x_0 + U_m$, and then $x_i + U_i \subset V$ holds. For any $j \in J(i)$ with $\alpha_{ij}(x_i) \neq 0$

© American Mathematical Society 1974

Received by the editors February 5, 1973.

AMS (MOS) subject classifications (1970). Primary 54C60, 47H10.

we have $x_i \in x_{ij} + U_i$, hence $x_{ij} \in V$ which implies $y_{ij} \in W$. Then

$$x_i = f_i(x_i) = \sum_{j \in J(i)} \alpha_{ij}(x_i) y_{ij} \in W,$$

contradicting that $x_i \in V$. Therefore $x_0 \in T(x_0)$ holds.

Fan's fixed point theorem immediately implies the theorems of Kakutani [3] $(E=R^n)$, Tychonoff [4] $(T(x)=\{f(x)\})$ for a continuous function $f: K \rightarrow K$, as well as the fundamental Brouwer fixed point theorem used in the proof above.

References

1. F. E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann. 177 (1968), 283-301. MR 37 #4679.

2. K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126. MR 13, 858.

3. S. Kakutani, A generalization of Brouwer's fixed point theorem, Duke Math. J. 8 (1941), 457-459. MR 3, 60.

4. A. Tychonoff, Ein Fixpunktsatz, Math. Ann. 111 (1935), 767-776.

INSTITUTE OF ECONOMICS, UNIVERSITY OF COPENHAGEN, COPENHAGEN, DENMARK

644