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THE FIRST INITIAL-BOUNDARY  VALUE PROBLEM

FOR SOME NONLINEAR TIME DEGENERATE
PARABOLIC EQUATIONS

MARGARET C.   WAID1

Abstract.   Consider the nonuniformly parabolic operator

n n

Lu=  J atí(x, t)ux¡x¡+ 2 b¡(x, t)ux. - c(x, t, u)u, + d(x, t)u,
i,i—\ i=X

where u, a", bi, c, d are bounded, real-valued functions defined

on a domain D—Qx [0, T]<=R*+1. Assume that c(x, t, u) is

Lipschitz continuous in | • \x of CX(D), and that c(x, t, u)>0 on

D. Sufficient conditions on c are found which guarantee existence of

a unique solution u e C2+x to the first initial-boundary value prob-

lem Lu=f(x, t), u=y, on the normal boundary of D, where

V e C1+x. Existence is proved by direct application of a fixed point

theorem due to Schauder using existence of a solution to the

linear problem as well as a priori estimates.

1. Introduction. We shall be concerned with existence of a solution

to the first initial-boundary value problem for the second-order nonlinear

nonuniformly parabolic operator

n n

(1.1) Lu = 2 auux.Xj + J b\x, t)ux. - c(x, t, u)ut + d(x, t)u,

1.5 = 1 ¿=1

where u and all coefficients of L are real-valued functions defined for

(x,t)=(xx, ■ • ■ , xn, t)   in   an   (w-H)-dimensional,   bounded,   convex

domain D. Subscripts will be used to denote differentiation.

We will assume that L is parabolic; that is,

(1.2) ¿ «"Soi £ Y If I2 > 0
i.i=X
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for some y>0 and for any real vector f ?±0. Assume that the coefficient

c(x, t, w)=0 but is not necessarily bounded away from zero. Since

c(x, t, u) may be zero for some (x, t)e D, L may be a degenerate para-

bolic operator. Note that c may be a function of u as well as of x and t.

The author has already proved the existence of a unique solution to the

first initial-boundary value problem for the linear equation

(1.3)   Mu = 2 auux¡x. + J b*uXi - c(x, t)ut + d(x, t)u = f(x, t)
¿.3 = 1 1=1

in [4]. Existence of a solution to the nonlinear problem is proved with

the aid of a fixed point theorem due to Schauder. We shall also use the

fact that we can obtain a solution to the linear initial-boundary value

problem together with a priori estimates obtained in [4].

This partial differential equation arises in applications to studies

dealing with fluid flow through porous media. One such application [3]

deals with diffusion and filtration of lipid-protein complexes and oxygen

through the arterial wall and into surrounding tissue. Historically, the

porosity coefficient c has been assumed to be a positive constant, which

is an average obtained in studying a healthy artery. However, tissue, as

well as blood, is a heterogeneous composite of materials. In the case of a

nonhealthy artery (as in atherosclerosis), it is precisely this heterogeneity

which is of interest. The coefficient of porosity c(x, t, u) is more accurately

and usefully described as a coefficient of space, time, and pressure.

2. Notation and the linear first initial-boundary value problem.   We

shall use the same notation as A. Friedman [2, p. 40] to describe the

domain D. As stated in the introduction, D is a bounded, convex, (n+l)-

dimensional domain in Rn+1, where (x, t)=(xx, • ■ ■ ,xn, t) represents a

variable point in R7l+X. dD denotes the boundary of D. Thus, dD=B+

BT+S, where B is a domain in Rn x {0}, BT (7>0) is a domain in Rn X {T},

and 5 is a manifold, not necessarily connected, in R"x(0, T]. S+B

therefore denotes the parabolic, or normal, boundary of D.

Let DT=Dn(Rnx(0, t)), BT=Dry(R"x{T}), and ST = SC\(R7ix (0, r]).

Assume that for each r e (0, T), BT is a domain. Then, for every (x, t)

in D, 0<r<T, if S(x, r) = Dr+Br, then (S(x, r))~-S(x, r)=B+Sr,

where (S(x, t))~ denotes the closure of (S(x, t)). Also, assume that the

following is a condition on D: There exists a simple continuous curve a

connecting B to BT along which the (-coordinate is nondecreasing.

Introduce the metric d defined by

d(P, Q) = [\x - x\* + \t- f\?»
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where P=(x, t), Q=(x, i), and W»(2"-i *?)1/2- Holder continuity of a

function/is defined with respect to the metric d.

Suppose a e (0, 1). Then let

i    i-D ii riDr   \ \U(P) ~ "(0)1 ,_.X)        .    ,D   ,    nD,   n
|u|o  =sup|u|,       Hx(u)= sup — ,     |«|«  = ]u|o  + #«(«)•

£ P.Gefl     d(P, ß)

Then,   Ca(Z))={u: u:D-*R, |ö|f <oo}  is  a  Banach  space with norm

| • |f ; see [2, pp. 62-63].
Denote by JD™ any partial derivative of order m with respect to the

variables xl3m",xn and let Dt = dldt. If ¿>xm, Z>2«, Z)tw exist in D, then

we define

MS. = ifiif + 2 K^n? + 2 i(^«rif + i(D««rif.
where the sums are taken over all partial derivatives of the indicated

order. Let

C2+X(D)= {u:u:D-+R,\ü\°+x< co}.

Then, C2+X(D) is a Banach space with norm | : \2+x; see [2]. When there

is no confusion, we will drop the D from | • |f, |: \f+x.

Definition 2.1. We say that D has property (£) if for every point

Q of S, there exists an («+l)-dimensional neighborhood V such that

VnS can be represented, for some i (1 _/_«), in the form

xi = n\xli , -*i-l, xi+li , Xn-> 0,

where h, DJt, D\h, Dth are Holder continuous of exponent a.

Definition 2.2. If D has property (£) and if the functions DxDfi,

D\h of the local representations of 5 exist and are continuous functions,

then we say D has property (£")•

Definition 2.3. A function y defined on B+S is said to belong to

C2+X(D) if there exist functions Y in Ci+a(D) such that x¥=xp on B+S.

Then \xp\2+x is defined by

\<¡>\°+x = inf\xY\?+x,

where the infimum is taken over all Y e C2+X(D) which coincide with

f on B+S.
The following notation is one of convenience. If m is a bounded real-

valued function on a subset S of Rn+1, define

M(u; S) = sup{u(;c, t):(x, t) e S}

and

m(u; S) = inf{«(x, t):(x, t) e S}.
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In [4], the author solves the linear first initial-boundary value problem

n n

Nu = 2 aijux_x. + 2 b\x, t)ux. - c(x, t)ut + d(x, t)u

(2 1)^■x> =f(x,t)   on D + BT,

u = y>    on B + S

without assuming that c has a positive minimum in D. We now state this

theorem precisely.

Theorem 2.4. Assume that aij is constant for each i, j, that all coeffi-

cients ofN, defined in (2.1) are of class CX-X(D), u e C(D), u e C3(D), and

axlX2+bxX^.l for some X>0. Suppose, further, that the coefficients of

N are uniformly Holder continuous (exponent a.) in D, \(a")~\x^Rx,

\(b')~\x^Kx, \e\,ÚR» l¿la=£i, ¡hat m(c; B+S)^p>0 while m(c;_D)^0,
that \f\x<oo, and that (1.2) holds. If D has property (E'), y> e C2+X(D),

and Nrp=f on dB, then there exists a unique solution u of the first initial-

boundary value problem (2.1) and, furthermore, u e C2+xiD).

3. A priori estimates. Our proof for the nonlinear case requires

the use of an a priori estimate for a solution to the linear problem. The

following theorem was proved in [4].

Theorem 3.1. Suppose that the conditions of Theorem 2.4 hold,

together with the added restriction that w(c; D)^p>0. Then there exists

a constant K depending only on Klt K2, a, and D such that ifiu is a solution

to Nu=f, with u=ip on B+S, and ifiu e C2+xiD), then

(3.1) |fil2+« á i¿-inRi\v\«+* + I/U-

The technique which was used in obtaining the solution in Theorem

2.4 involved perturbing the coefficient c by l/k and considering the

problem

Nku = Nu- il¡k)ut =f   on D + BT,

^ u = rp    on B + S.

By Friedman's work, we were guaranteed a unique solution uke C2+xiD).

We were able to show that the sequence {uk} obtained in this manner is

Cauchy in the Banach space C2^a(£>) and does, in fact, converge to the

unique solution of the first initial-boundary value problem (2.1).

These uk, incidentally, satisfy

(3.3) l(«*n2+a Ú kmRi\w\2+1 + l/l.).
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If lvjl2+a+l/L>0, there is some uK such that \(u—uK)   |2+<z<|y|2+a+

I/I». Since uK satisfies (3.1), we may conclude that

l"l*+a = l(" -uK + uK)~\2+x < \(u - uK)~\2+a + Kw^)-|2+a

= (if in. + i/i.) + Ki/2R(m2+x + i/ü

= (l + WtXffl». + l/l.).

We have just proved the following theorem.

Theorem 3.2.    Assume all the conditions of Theorem 2.4.  Then the

solution u of the first initial-boundary value problem (2.1) satisfies

(3.4) \u\2+x = M(\ip\2+X + l/l.),

/or some constant M which is independent ofm(c ; D),provided lv¡|2+ot+1/|«>

0.

4. The nonlinear problem.   We now proceed to solve the first initial-

boundary value problem (L defined as in (1.1)):

Lu = f(x, t),   on D + BT,
(4.1) -

u = ip,   on B + S.

For t; a fixed element of C2+X(D), consider the linear problem

n n

Lvii = 2 a'X.x. + 2 b¿"*,- - c(x'?' r)"< + ¿u

(4.2)
f.í-i

= f(x, t),   on £> + BT,

u = y>,   on iS + S.

Assuming that as a function of x and /, c(x, t, v) satisfies the hypotheses

of Theorem 2.4, we obtain a solution u e C2+X(D) to the initial-boundary

value problem (4.2). u obviously depends upon v. Hence, we define

4>:C2+x(D)->-C2+x(D) by u=<f>(v) is the unique solution to the initial-

boundary value problem (4.2).

Under appropriate conditions on c, we will show that

(i) <¡>:A-*A, where A is some closed convex subset of C2+X(D);

(ii) <f> is continuous in |: \2+x on A.

We will then be able to apply the Schauder fixed point theorem of [2,

p.  189] to obtain an element ueC2+x(D) such that <p(u)=u. Then u

will be a solution to (4.1) and we will have proved the desired existence

theorem.

An argument similar to that given by Friedman in [2] allows us to

assume that y=0 on B+S. We will assume that c(x, t, u) is Lipschitz

continuous with respect to u in the | 7 \x norm. That is, if (x, t)e D
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and Ux,u2e CX(D), then

\(c(x, t, Ux) - cix, t, u2))-\? ^ V K"i - «2)~l?

for some positive constant rj.

Let A = {u:\ü\2°+x<2M\f\°, u=0 on B+S} where / is the forcing

function in (4.2) and M is the constant obtained in Theorem 3.2. A is

clearly a closed convex subset of C2+X(D).

Now suppose that v e A and h e [0, 1]. Then <f>(hv) satisfies Lhvj>(hv)=f,

<t>(hv)=0 on B+S. We note that Lhv<f>(hv)=f can be rewritten in the form

(4.3) Lj(v) = Lv<f>(v) - Lhv<f>(hv) +f= F(v).

Hence, <f>(v) satisfies:

Lj(v) = F(v)   in D + BT,
(4 4)
v    ' <b(v) = 0        on B + S.

Using (4.3), we see that

l(F(t»ri? ^ KLrftv) - Lhl,<pihv))-\? + |/|f

^ K \(<f>(v) - <f>(hv))-\?+*

+ \(c(x, t, v) - c(x, t, hv))-\D \([<f>(hv)]t)-\? + l/lf.

But, \([<i>(hv)}t)~\^Kx for some Kt>0 and for all h e [0,1]. This follows

from the proof of Theorem 6.4 of [4, pp. 53-54]. <f>(v)—<f>(hv) satisfies

I» = [c(x, t, v) - c(x, t, hv)][<f>(hv)]t   inD + BT,

( ' ' u = 0   on B + S.

Applying Theorem 3.2 to the system (4.5), we have the estimate

\(<f>(v) - cKhv))-\?+a ̂  M\(c(x, t, v) - c(x, t, hv))-\? \([<Khv)]t)-\?.

Therefore,

l(F(p)nf ^ K \(c(x, t, v) - c(x, t, ke)r\f KWflkWI?

+ \(c(x, t, v) - c(x, t, hv))~\? \iWhv)]t)-\? + l/lf

£(K+\)ri\(v-hv)-\? Kx+\f\?

<(K+l)r¡Kx\l-h\\v\?+\f\7J.

We have thus proved the inequality

(4.6) \(F(v))~\f = (K + Dr,Kx \1 - h\ |0|f + |/|f.
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Applying Theorem 3.2 to the system (4.4), we have the estimate

(4.7) \(<p(v))-\ï+*UM\(F(v))-\{>.

Inequalities (4.6) and (4.7) yield

l(*(»)f"liU = [(fc + \)nKx \\-h\ |i|f + \f\'>]M.

But veA implies \v\x^\v\2+x^2M\f\x. Choose h so that

2(K+l)r¡Kx\l-h\M^l. Thus, \(^(v))~\^+x<2M\f\x. We conclude that
<p maps A to A.

It is easy to show that <j> is continuous with respect to | • \2+x in A.

Note that if v0 and v are in A, <j>(v0)—<j>(v) satisfies

M") " lc(*> '> yo) - c(x, t, v)][<j>(v)]t   in D + BT,
(4.o)

u = 0   on B + S.

Applying Theorem 3.2 to the system (3.8) we obtain the estimate

(4.9) U(v) - #t>0)n£i« = hi \(c(x, t, vn) - c(x, t, v))-\{> \{[4iv)]!T\ï

Recall that |([#>)],)—li^Af,. This uniform bound, together with

Lipschitz continuity of c(x, t, u) with respect to u, and (4.9) give

(4.10) U(v) - #i>o)rf.. = MKlV \(vn - v)-\ï-

Thus, <f) is continuous with respect to | • |2,a in A.

A fixed point theorem due to Schauder [2, p. 189] can be used to con-

clude that there exists a function u e A for which <f>(u) = u. We have thus

proved the following theorem.

Theorem 4.1 Assume that the conditions of Theorem 2.4 hold for the

operator L, defined in (1.1), and suppose also that c(x, t, u) is Lipschitz

continuous with respect to u in the \ • |, norm. If D has property (E1),

y> e C2+X(D), and Lxp=f on dB, then there exists a solution u, of the non-

linear first initial-boundary value problem (4.1) and furthermore,

u e C2+X(D).

Theorem 4.2.    The solution u obtained in Theorem 4.1 is unique.

Proof. The uniqueness of the solution to the nonlinear problem

(4.1) follows from uniqueness of the solution to the linear problem of

Theorem 2.4 by a well-known argument using the mean-value theorem.

See for example a paper by A. P. Calderón [1, p. 35], or extend in a

straightforward manner the argument given by A. Friedman [2, p. 41].
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