PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 42, Number 2, February 1974

A CHARACTERIZATION OF I-1 MATRICES

L. W. BARIC

ABSTRACT. Another proof is given of a known characterization of infinite matrices that preserve absolutely summable sequences where the entries of the matrices are continuous linear functions from a Fréchet space into a Fréchet space. In addition, another characterization is obtained using the adjoint matrix.

1. Introduction. Throughout this paper E and F will be Fréchet spaces, i.e. complete metrizable locally convex spaces, whose topologies are generated by the sequences of seminorms $\{p_i\}$ and $\{q_i\}$ respectively. A sequence, $\{x_i\}$, in E is called absolutely summable if for every p_j , $\sum_i p_j(x_i)$ is convergent. The vector space of all such sequences will be denoted by $l^1[E]$. It follows that $l^1[E]$ is a Fréchet space with topology generated by $\{P_i\}$ where

$$P_i(x) = \sum_{n=1}^{\infty} p_i(x_n).$$

In fact, $l^{1}[E]$ is then an *FK*-subspace of the space of all sequences in *E* as defined in [1], i.e. the coordinate functions are continuous from $l^{1}[E]$ into *E*.

Let the infinite matrix $A = (A_{nk})$ have entries which are continuous linear maps from E into F. If $x = \{x_k\}$ is any sequence in E such that $\sum_k A_{nk}(x_k)$ is convergent for each n, then we say that y = Ax where $y_n = \sum_k A_{nk}(x_k)$ for $n=1, 2, \cdots$. In a recent paper [5], B. Wood has characterized matrices that carry elements of $l^1[E]$ into $l^1[F]$ and termed such matrices l-l. In this article we offer a different proof of Wood's characterization and obtain another by introducing the adjoint concept.

2. **Results.** Let the infinite matrix A be as in the introduction. We will say that (*) holds if and only if

(*) for each bounded set M_{α} in E and for each fixed j there exists $K_{\alpha,j}$ such that $\sum_{n=1}^{m} q_j(A_{nr}(x)) \leq K_{\alpha,j}$ for all m, all r and all x in M_{α} .

© American Mathematical Society 1974

Received by the editors February 22, 1973 and, in revised form, May 21, 1973. AMS (MOS) subject classifications (1970). Primary 40J05; Secondary 46N05.

Before continuing we pause to mention that the *FK* space of all sequences in *F* will be denoted here by s(F). (In [1] we called it F(s).) Moreover, any matrix map between *FK* spaces is continuous. In addition, for any positive integer *n*, we define $I_n: E \rightarrow l^1[E]$ by $I_n(x)$ is that sequence with *x* in the *n*th position and zero elsewhere. It is clear that I_n is continuous and linear.

THEOREM 2.1. Let $A: l^1[E] \rightarrow s(F)$. Then A is l-l if and only if (*) holds.

PROOF. Let A be *l*-*l* and let M_{α} be a bounded subset of E. Thus for each positive integer *i* there exists a positive α_i such that $p_i(x) \leq \alpha_i$ for all x in M_{α} . Let

$$U_{\alpha} = \{ x \in l^{1}[E] : P_{i}(x) \leq \alpha_{i}, i \in N \}$$

where N denotes the positive integers. Then U_{α} is a bounded subset of $l^{1}[E]$, and for any n and any $x \in M_{\alpha}$, $I_{n}(x) \in U_{\alpha}$. Since A is continuous into $l^{1}[F]$, $A[U_{\alpha}]$ is a bounded subset of $l^{1}[F]$. So for any fixed j, there exists $K_{\alpha,j}$ such that $Q_{j}(y) \leq K_{\alpha,j}$ for all y in $A[U_{\alpha}]$. In particular, $Q_{j}(A(I_{p}(x))) \leq K_{\alpha,j}$ for all p and all x in M_{α} . We thus have

$$\sum_{r=1}^{\infty} q_j(A_{rp}(x)) \leq K_{\alpha,j} \text{ for all } p, \text{ all } x \in M_{\alpha}.$$

Then

$$\sum_{r=1}^{m} q_{j}(A_{rp}(x)) \leq K_{\alpha,j} \quad \text{for all } p, \text{ all } x \in M_{\alpha} \text{ and all } m,$$

i.e. (*) holds.

Now suppose (*) holds. Recall that $l^1 \otimes E$ is densely embedded in $l^1[E]$ by $\xi \otimes X \rightarrow \{\xi_i x\}_{i=1}^{\infty}$, see p. 183 of [3]. In the following we will identify $\xi \otimes x$ with this sequence.

Fix $\xi \otimes x$ in $l^1[E]$. By (*), for fixed p in N there exists $K_{x,p}$ such that $\sum_{n=1}^{m} q_p(A_{nj}(x)) < K_{x,p}$ for all m and all j. Fix m and r positive integers. Then

$$\sum_{j=1}^{r} \sum_{n=1}^{m} |\xi_{j}| q_{p}(A_{nj}(x)) \leq \sum_{j=1}^{r} |\xi_{j}| \left(\sum_{n=1}^{m} q_{p}(A_{nj}(x)) \right) \leq K_{x,p} \|\xi\|_{l_{1}}.$$

Hence

$$\sum_{j=1}^{r} \sum_{n=1}^{\infty} |\xi_{j}| q_{p}(A_{nj}(x)) \leq K_{x,p} \|\xi\|_{l_{1}},$$

and also

$$\sum_{j=1}^{\infty} \sum_{n=1}^{\infty} |\xi_j| \, q_p(A_{nj}(x)) \leq K_{x,p} \, \|\xi\|_{l_1}.$$

518

It follows that

$$\sum_{n=1}^{\infty} q_p \left(\sum_{j=1}^{\infty} \xi_j A_{nj}(x) \right) \leq K_{x,p} \|\xi\|_{l_1},$$

i.e. $A(\xi \otimes x)$ is in $l^1[F]$ and so A carries every element of $l^1 \otimes E$ into $l^1[F]$.

Let T denote A restricted to $l^1 \otimes E$ as embedded in $l^1[E]$. We will now show that T is continuous on $l^1 \otimes E$ with the topology induced by $l^1[E]$. Consider that T induces the unique bilinear mapping $\hat{T}: l^1 \times E \rightarrow l^1[F]$ where $\hat{T}((\xi, x)) = T(\xi \otimes x)$, see p. 404 of [4]. We then have the commutative diagram

Notice that the topology induced on $l^1 \otimes E$ by $l^1[E]$ is the projective (or Π) topology, see p. 183 of [3]. Moreover, by Proposition 43.4, p. 438 of [4], T is continuous if and only if \hat{T} is continuous and \hat{T} is continuous if and only if \hat{T} is continuous and \hat{T} is continuous if and only if \hat{T} is continuous at (0, 0).

Let $(\xi^n, x_n) \rightarrow 0$ in $l^1 \times E$. Thus $\xi^n \rightarrow 0$ in l^1 and $x_n \rightarrow 0$ in E. Fix p in N. By (*) there exists K_p , dependent upon the bounded set $\{x_n: n \text{ in } N\}$ such that $\sum_{j=1}^{\infty} q_p(A_{jr}(x_n)) \leq K_p$ for all r and all n. Thus for any n,

$$\begin{aligned} Q_p(\hat{T}(\xi^n, x_n)) &= \sum_r q_p((\hat{T}(\xi^n, x_n))_r) = \sum_r q_p((T(\xi^n \otimes x_n))_r) \\ &= \sum_r q_p\left(\sum_j A_{rj}(\xi^n_j x_n)\right) \leq \sum_r \sum_j |\xi^n_j| q_p(A_{rj}(x_n)) \\ &= \sum_j |\xi^n_j| \left(\sum_r q_p(A_{rj}(x_n))\right) \leq K_p \|\xi^n\|_{l_1}. \end{aligned}$$

The latter tends to zero as *n* tends to infinity. Thus \hat{T} is continuous at (0, 0), and so *T* is continuous on $l^1 \otimes E$ under the relative topology induced by $l^1[E]$.

By continuity we may extend T to $T': l^1[E] \rightarrow l^1[F]$. Since T' is continuous into $l^1[F]$, it is also continuous into s(F). Now A is also continuous into s(F) and A agrees with T' on a dense subset of $l^1[E]$. Hence, A agrees with T' on $l^1[E]$ and therefore A carries $l^1[E]$ into $l^1[F]$.

We now turn to a study of the adjoint matrix. If A is an infinite matrix, $A = (A_{ij})$, with each A_{ij} a continuous linear map from E into F, then let $A^* = (A_{ji}^*)$ where A_{ji}^* is the adjoint of A_{ji} .

1974]

Recall that the dual of $l^{1}[E]$ can be identified with a space of sequences, namely the set of all equicontinuous sequences of continuous linear functionals on E, see p. 180 of [3]. In the following we shall use this identification.

LEMMA 2.2. Let A be l-l. Then A^* represents the adjoint of the operator defined by A, call it T_A , in the sense that given any $f = \{f_n\}$ in the dual of $l^1[F]$ and given any $x = \{x_n\}$ in $l^1[E]$, we have

$$\langle \mathbf{x}, T_{A}^{*}f \rangle = \sum_{j} \left\langle \mathbf{x}_{j}, \sum_{n} A_{nj}^{*}f_{n} \right\rangle = \sum_{j} \left\langle \mathbf{x}_{j}, (A^{*}f)_{j} \right\rangle$$

where $\sum_{n} A_{nj}^{*} f_{n}$ is convergent in the w*-topology on E', the dual of E.

PROOF. We will first show that $\sum_n A_{nj}^* f_n$ is pointwise convergent and consequently, by the Banach-Steinhaus closure theorem, is a continuous linear functional on *E*. Fix *j* and fix *x* in *E*. Since $I_j x$ is in $l^1[E]$, we have

$$\langle A(I_j x), f \rangle = \sum_n \langle A_{nj}(x), f_n \rangle = \sum_n \langle x, A_{nj}^* f_n \rangle.$$

For any fixed *m*, define $U_m: l^1[E] \rightarrow l^1[E]$ by $U_m(x) = \{x_1, x_2, \cdots, x_m, 0, 0, 0, \cdots\}$. It is easy to see that $U_m(x) \rightarrow x$ as $m \rightarrow \infty$ for each x in $l^1[E]$. Fix $x = \{x_n\}$ in $l^1[E]$ and consider

$$\langle \mathbf{x}, T_{\mathcal{A}}^{*}f \rangle = \lim_{m} \langle U_{m}\mathbf{x}, T_{\mathcal{A}}^{*}f \rangle = \lim_{m} \langle A(U_{m}\mathbf{x}), f \rangle$$

$$= \lim_{m} \sum_{n=1}^{\infty} \left\langle \sum_{j=1}^{m} A_{nj}x_{j}, f_{n} \right\rangle$$

$$= \lim_{m} \lim_{p} \sum_{n=1}^{p} \sum_{j=1}^{m} \langle A_{nj}x_{j}, f_{n} \rangle$$

$$= \lim_{m} \lim_{p} \sum_{j=1}^{m} \sum_{n=1}^{p} \langle A_{nj}x_{j}, f_{n} \rangle$$

$$= \sum_{j=1}^{\infty} \sum_{n=1}^{\infty} \langle x_{j}, A_{nj}^{*}f_{n} \rangle = \sum_{j} \left\langle x_{j}, \sum_{n} A_{nj}^{*}f_{n} \right\rangle$$

$$= \sum_{j} \langle x_{j}, (A^{*}f)_{j} \rangle.$$

As a corollary to the previous lemma one obtains the fact that

$$\sum_{j}\sum_{n} \langle x_{j}, A_{nj}^{*}f_{n} \rangle = \sum_{n}\sum_{j} \langle x_{j}, A_{nj}^{*}f_{n} \rangle$$

by computing $\langle Ax, f \rangle$.

520

Before continuing we pause to note that if X is a locally convex, sequentially complete linear topological space then a subset of the dual space is strongly bounded if and only if it is w^* -bounded, see 18.5 of [2].

THEOREM 2.3. Let $A:l^1[E] \rightarrow s(F)$. Then A is l-l if and only if for every $f = \{f_k\}$ in $(l^1[F])'$, the collection $\{\sum_{p=1}^m A_{pj}^* f_p:m \text{ and } j \text{ positive integers}\}$ is w*-bounded, i.e. bounded in w(E', E).

PROOF. Let A be *l*-*l* and fix $f = \{f_k\}$ in $(l^1[F])'$. By the lemma, A^* is the adjoint of A and so A^* is w^* -continuous. Since $U_m f \rightarrow f$ in the w^* -topology of $(l^1[F])'$, $A^*(U_m f) \rightarrow A^* f$ in the w^* -topology of $(l^1[E])'$. In particular, $\{A^*(U_m f)\}_{m=1}^{\infty}$ is w^* -bounded in $(l^1[E])'$. Since $l^1[E]$ is sequentially complete, it is also strongly bounded. Fix x in E. Then $\{I_j(x): j \text{ a positive integer}\}$ is a bounded subset of $l^1[E]$. Thus there is a positive M such that $|(A^*(U_m f))(I_j(x))| \leq M$ for all m and all j. It follows that $|\sum_{p=1}^m A_{pj}^* f_p(x)| \leq M$ for all m and all j so the collection mentioned in the theorem is w^* -bounded.

Now let the condition on A^* hold. To see that A is *l*-*l* we will apply (*). Fix q_r over F and M_{α} a bounded subset of E. Consider that

$$\sum_{n=1}^{m} q_r(A_{nj}(x)) = \sum_{n=1}^{m} q_r((A(I_j x))_n) = Q_r(U_m \circ A \circ I_j(x)).$$

Thus we need to show that the set

$$B = \{U_m \circ A \circ I_j(x): j \text{ and } m \text{ in } N, x \text{ in } M_\alpha\}$$

is bounded in $l^{1}[F]$. Fix f in the dual of $l^{1}[F]$. Then

$$f(U_m \circ A \circ I_j(x)) = \sum_{p=1}^m f_p(A_{pj}(x)) = \sum_{p=1}^m A_{pj}^* f_p(x).$$

By our hypothesis there is a positive M such that $|\sum_{p=1}^{m} A_{pi}^{*} f_{p}(x)| \leq M$ for all m, all j and all x in M_{α} . Thus B is a weakly bounded subset of $l^{1}[F]$ and therefore a bounded subset of $l^{1}[F]$. It follows that (*) holds and A is l-l.

Recall that in the scalar situation, i.e. E and F are the scalars and the entries of A are scalars, A is l-l if and only if the transpose of A is m-m, where m denotes the space of all bounded scalar sequences. An analogue does exist in our case. The following result is easily established.

LEMMA 2.4. Let $A:m(E) \rightarrow s(F)$. Then A is m-m if and only if for each bounded set M_{α} in E and each fixed j there exists $K_{\alpha,j}$ such that $q_j(\sum_{k=1}^{\infty} A_{nk}x_k) \leq K_{\alpha,j}$ for all n and all x_k in M_{α} . COROLLARY 2.5. Let X and Y be Banach spaces and let $A: l^1[X] \rightarrow s(Y)$. Then A is l-l if and only if A^* is m-m, i.e. $A^*:m(Y') \rightarrow m(X')$.

PROOF. Let A be *l-l* and let M_{α} be a bounded subset of Y', say $||f|| \leq K$ for all f in M_{α} . Fix x in X with $||x|| \leq 1$. Since A is *l-l* there exists P such that $\sum_{k=1}^{\infty} ||A_{kn}(x)|| \leq P$ for all n. Then

$$\left|\sum_{k=1}^{\infty} A_{kn}^* f_k(x)\right| = \left|\sum_{k=1}^{\infty} f_k A_{kn}(x)\right|$$
$$\leq K \sum_{k=1}^{\infty} \|A_{kn}(x)\| \leq KP$$

for all f_k in M_{α} and all *n*. Thus for each n, $\sum_{k=1}^{\infty} A_{kn}^* f_k$ is pointwise convergent and so is in X'. Moreover, $\|\sum_{k=1}^{\infty} A_{kn}^* f_k\| \leq KP$ for all f_k in M_{α} and all *n*. Hence A^* is *m*-*m*.

Now let A^* be *m*-*m* and let $f = \{f_k\} \in m(Y') = (l^1[Y])'$. Then $M_{\alpha} = \{0\} \cup \{f_k: k \text{ a positive integer}\}$ is a bounded subset of Y'. By the lemma there is a K_{α} such that $\|\sum_{k=1}^m A_{kn}^* f_k\| \leq K_{\alpha}$ for all *n* and all *m*. It follows from 2.3 that A is *l*-*l*.

References

1. L. W. Baric, The chi function in generalized summability, Studia Math. 39 (1971), 165-180.

2. J. L. Kelley, I. Namioka et al., *Linear topological spaces*, Van Nostrand, Princeton, N.J., 1963.

3. H. H. Schaefer, *Topological vector spaces*, Macmillan, New York, 1966. MR 33 #1689.

4. F. Treves, Topological vector spaces, distributions and kernels, Academic Press, New York, 1967. MR 37 #726.

5. B. Wood, On l-l summability, Proc. Amer. Math. Soc. 25 (1970), 433-436. MR 41 #684.

DEPARTMENT OF MATHEMATICS, DICKINSON COLLEGE, CARLISLE, PENNSYLVANIA 17013