A CHARACTERIZATION OF l-l MATRICES

L. W. BARIC

Abstract

Another proof is given of a known characterization of infinite matrices that preserve absolutely summable sequences where the entries of the matrices are continuous linear functions from a Fréchet space into a Fréchet space. In addition, another characterization is obtained using the adjoint matrix.

1. Introduction. Throughout this paper E and F will be Fréchet spaces, i.e. complete metrizable locally convex spaces, whose topologies are generated by the sequences of seminorms $\left\{p_{i}\right\}$ and $\left\{q_{i}\right\}$ respectively. A sequence, $\left\{x_{i}\right\}$, in E is called absolutely summable if for every p_{j}, $\sum_{i} p_{j}\left(x_{i}\right)$ is convergent. The vector space of all such sequences will be denoted by $l^{1}[E]$. It follows that $l^{1}[E]$ is a Fréchet space with topology generated by $\left\{P_{i}\right\}$ where

$$
P_{i}(x)=\sum_{n=1}^{\infty} p_{i}\left(x_{n}\right) .
$$

In fact, $l^{l}[E]$ is then an $F K$-subspace of the space of all sequences in E as defined in [1], i.e. the coordinate functions are continuous from $l^{1}[E]$ into E.

Let the infinite matrix $A=\left(A_{n k}\right)$ have entries which are continuous linear maps from E into F. If $x=\left\{x_{k}\right\}$ is any sequence in E such that $\sum_{k} A_{n k}\left(x_{k}\right)$ is convergent for each n, then we say that $y=A x$ where $y_{n}=\sum_{k} A_{n k}\left(x_{k}\right)$ for $n=1,2, \cdots$. In a recent paper [5], B. Wood has characterized matrices that carry elements of $l^{1}[E]$ into $l^{1}[F]$ and termed such matrices $l-l$. In this article we offer a different proof of Wood's characterization and obtain another by introducing the adjoint concept.
2. Results. Let the infinite matrix A be as in the introduction. We will say that $\left(^{*}\right)$ holds if and only if
for each bounded set M_{α} in E and for each fixed j there exists $K_{\alpha, j}$
such that $\sum_{n=1}^{m} q_{j}\left(A_{n r}(x)\right) \leqq K_{\alpha, j}$ for all m, all r and all x in M_{α}.

[^0]AMS (MOS) subject classifications (1970). Primary 40J05; Secondary 46N05.

Before continuing we pause to mention that the $F K$ space of all sequences in F will be denoted here by $s(F)$. (In [1] we called it $F(s)$.) Moreover, any matrix map between $F K$ spaces is continuous. In addition, for any positive integer n, we define $I_{n}: E \rightarrow l^{1}[E]$ by $I_{n}(x)$ is that sequence with x in the nth position and zero elsewhere. It is clear that I_{n} is continuous and linear.

Theorem 2.1. Let $A: l^{1}[E] \rightarrow s(F)$. Then A is $l-l$ if and only if (*) holds.

Proof. Let A be $l-l$ and let M_{α} be a bounded subset of E. Thus for each positive integer i there exists a positive α_{i} such that $p_{i}(x) \leqq \alpha_{i}$ for all x in M_{α}. Let

$$
U_{\alpha}=\left\{x \in l^{1}[E]: P_{i}(x) \leqq \alpha_{i}, i \in N\right\}
$$

where N denotes the positive integers. Then U_{α} is a bounded subset of $l^{1}[E]$, and for any n and any $x \in M_{\alpha}, I_{n}(x) \in U_{\alpha}$. Since A is continuous into $l^{1}[F], A\left[U_{\alpha}\right]$ is a bounded subset of $l^{1}[F]$. So for any fixed j, there exists $K_{\alpha, j}$ such that $Q_{j}(y) \leqq K_{\alpha, j}$ for all y in $A\left[U_{\alpha}\right]$. In particular, $Q_{j}\left(A\left(I_{p}(x)\right)\right) \leqq K_{\alpha, j}$ for all p and all x in M_{α}. We thus have

$$
\sum_{r=1}^{\infty} q_{j}\left(A_{r p}(x)\right) \leqq K_{\alpha, j} \text { for all } p, \text { all } x \in M_{\alpha}
$$

Then

$$
\sum_{r=1}^{m} q_{j}\left(A_{r p}(x)\right) \leqq K_{\alpha, j} \text { for all } p \text {, all } x \in M_{\alpha} \text { and all } m
$$

i.e. (*) holds.

Now suppose (*) holds. Recall that $l^{1} \otimes E$ is densely embedded in $l^{1}[E]$ by $\xi \otimes X \rightarrow\left\{\xi_{i} x\right\}_{i=1}^{\infty}$, see p. 183 of [3]. In the following we will identify $\xi \otimes x$ with this sequence.

Fix $\xi \otimes x$ in $l^{1}[E]$. By (*), for fixed p in N there exists $K_{x . \nu}$ such that $\sum_{n=1}^{m} q_{p}\left(A_{n j}(x)\right)<K_{x, \nu}$ for all m and all j. Fix m and r positive integers. Then

$$
\sum_{j=1}^{r} \sum_{n=1}^{m}\left|\xi_{j}\right| q_{\nu}\left(A_{n j}(x)\right) \leqq \sum_{j=1}^{r}\left|\xi_{j}\right|\left(\sum_{n=1}^{m} q_{p}\left(A_{n j}(x)\right)\right) \leqq K_{x . p}\|\xi\|_{l_{1}} .
$$

Hence

$$
\sum_{j=1}^{r} \sum_{n=1}^{\infty}\left|\xi_{j}\right| q_{p}\left(A_{n j}(x)\right) \leqq K_{x . p}\|\xi\|_{l_{1}},
$$

and also

$$
\sum_{j=1}^{\infty} \sum_{n=1}^{\infty}\left|\xi_{j}\right| q_{p}\left(A_{n j}(x)\right) \leqq K_{x, p}\|\xi\|_{l_{2}} .
$$

It follows that

$$
\sum_{n=1}^{\infty} q_{p}\left(\sum_{j=1}^{\infty} \xi_{j} A_{n j}(x)\right) \leqq K_{x . p}\|\xi\|_{l_{1}},
$$

i.e. $A(\xi \otimes x)$ is in $l^{1}[F]$ and so A carries every element of $l^{1} \otimes E$ into $l^{1}[F]$.

Let T denote A restricted to $l^{1} \otimes E$ as embedded in $l^{1}[E]$. We will now show that T is continuous on $l^{1} \otimes E$ with the topology induced by $l^{1}[E]$. Consider that T induces the unique bilinear mapping $\hat{T}: l^{1} \times E \rightarrow l^{1}[F]$ where $\hat{T}((\xi, x))=T(\xi \otimes x)$, see p. 404 of [4]. We then have the commutative diagram

Notice that the topology induced on $l^{1} \otimes E$ by $l^{1}[E]$ is the projective (or П) topology, see p. 183 of [3]. Moreover, by Proposition 43.4, p. 438 of [4], T is continuous if and only if \hat{T} is continuous and \hat{T} is continuous if and only if it is continuous at $(0,0)$.

Let $\left(\xi^{n}, x_{n}\right) \rightarrow 0$ in $l^{1} \times E$. Thus $\xi^{n} \rightarrow 0$ in l^{1} and $x_{n} \rightarrow 0$ in E. Fix p in N. By $\left(^{*}\right)$ there exists K_{p}, dependent upon the bounded set $\left\{x_{n}: n\right.$ in $\left.N\right\}$ such that $\sum_{j=1}^{\infty} q_{p}\left(A_{j r}\left(x_{n}\right)\right) \leqq K_{p}$ for all r and all n. Thus for any n,

$$
\begin{aligned}
Q_{\mathcal{D}}\left(\hat{T}\left(\xi^{n}, x_{n}\right)\right) & =\sum_{r} q_{p}\left(\left(\hat{T}\left(\xi^{n}, x_{n}\right)\right)_{r}\right)=\sum_{r} q_{p}\left(\left(T\left(\xi^{n} \otimes x_{n}\right)\right)_{r}\right) \\
& =\sum_{r} q_{p}\left(\sum_{j} A_{r j}\left(\xi_{j}^{n} x_{n}\right)\right) \leqq \sum_{r} \sum_{j}\left|\xi_{j}^{n}\right| q_{p}\left(A_{r j}\left(x_{n}\right)\right) \\
& =\sum_{j}\left|\xi_{j}^{n}\right|\left(\sum_{r} q_{p}\left(A_{r j}\left(x_{n}\right)\right)\right) \leqq K_{p}\left\|\xi^{n}\right\|_{l_{1}} .
\end{aligned}
$$

The latter tends to zero as n tends to infinity. Thus \hat{T} is continuous at $(0,0)$, and so T is continuous on $l^{1} \otimes E$ under the relative topology induced by $l^{1}[E]$.
By continuity we may extend T to $T^{\prime}: l^{1}[E] \rightarrow l^{1}[F]$. Since T^{\prime} is continuous into $l^{1}[F]$, it is also continuous into $s(F)$. Now A is also continuous into $s(F)$ and A agrees with T^{\prime} on a dense subset of $l^{1}[E]$. Hence, A agrees with T^{\prime} on $l^{1}[E]$ and therefore A carries $l^{1}[E]$ into $l^{1}[F]$.

We now turn to a study of the adjoint matrix. If A is an infinite matrix, $A=\left(A_{i j}\right)$, with each $A_{i j}$ a continuous linear map from E into F, then let $A^{*}=\left(A_{j i}^{*}\right)$ where $A_{j i}^{*}$ is the adjoint of $A_{j i}$.

Recall that the dual of $l^{1}[E]$ can be identified with a space of sequences, namely the set of all equicontinuous sequences of continuous linear functionals on E, see p. 180 of [3]. In the following we shall use this identification.

Lemma 2.2. Let A be l-l. Then A^{*} represents the adjoint of the operator defined by A, call it T_{A}, in the sense that given any $f=\left\{f_{n}\right\}$ in the dual of $l^{1}[F]$ and given any $x=\left\{x_{n}\right\}$ in $l^{1}[E]$, we have

$$
\left\langle x, T_{A}^{*} f\right\rangle=\sum_{j}\left\langle x_{j}, \sum_{n} A_{n j}^{*} f_{n}\right\rangle=\sum_{j}\left\langle x_{j},\left(A^{*} f\right)_{j}\right\rangle
$$

where $\sum_{n} A_{n j}^{*} f_{n}$ is convergent in the w^{*}-topology on E^{\prime}, the dual of E.
Proof. We will first show that $\sum_{n} A_{n j}^{*} f_{n}$ is pointwise convergent and consequently, by the Banach-Steinhaus closure theorem, is a continuous linear functional on E. Fix j and fix x in E. Since $I_{j} x$ is in $l^{l}[E]$, we have

$$
\left\langle A\left(I_{j} x\right), f\right\rangle=\sum_{n}\left\langle A_{n j}(x), f_{n}\right\rangle=\sum_{n}\left\langle x, A_{n j}^{*} f_{n}\right\rangle .
$$

For any fixed m, define $U_{m}: l^{1}[E] \rightarrow l^{1}[E]$ by $U_{m}(x)=\left\{x_{1}, x_{2}, \cdots\right.$, $\left.x_{m}, 0,0,0, \cdots\right\}$. It is easy to see that $U_{m}(x) \rightarrow x$ as $m \rightarrow \infty$ for each x in $l^{1}[E]$. Fix $x=\left\{x_{n}\right\}$ in $l^{1}[E]$ and consider

$$
\begin{aligned}
\left\langle x, T_{A}^{*} f\right\rangle & =\lim _{m}\left\langle U_{m} x, T_{A}^{*} f\right\rangle=\lim _{m}\left\langle A\left(U_{m} x\right), f\right\rangle \\
& =\lim _{m} \sum_{n=1}^{\infty}\left\langle\sum_{j=1}^{m} A_{n j} x_{j}, f_{n}\right\rangle \\
& =\lim _{m} \lim _{p} \sum_{n=1}^{p} \sum_{j=1}^{m}\left\langle A_{n j} x_{j}, f_{n}\right\rangle \\
& =\lim _{m} \lim _{D} \sum_{j=1}^{m} \sum_{n=1}^{p}\left\langle A_{n j} x_{j}, f_{n}\right\rangle \\
& =\sum_{j=1}^{\infty} \sum_{n=1}^{\infty}\left\langle x_{j}, A_{n j}^{*} f_{n}\right\rangle=\sum_{j}\left\langle x_{j}, \sum_{n} A_{n j}^{*} f_{n}\right\rangle \\
& =\sum_{j}\left\langle x_{j},\left(A^{*} f\right)_{j}\right\rangle .
\end{aligned}
$$

As a corollary to the previous lemma one obtains the fact that

$$
\sum_{j} \sum_{n}\left\langle x_{j}, A_{n j}^{*} f_{n}\right\rangle=\sum_{n} \sum_{j}\left\langle x_{j}, A_{n j}^{*} f_{n}\right\rangle
$$

by computing $\langle A x, f\rangle$.

Before continuing we pause to note that if X is a locally convex, sequentially complete linear topological space then a subset of the dual space is strongly bounded if and only if it is w^{*}-bounded, see 18.5 of [2].

Theorem 2.3. Let $A: l^{l}[E] \rightarrow s(F)$. Then A is $l-l$ if and only if for every $f=\left\{f_{k}\right\}$ in $\left(l^{1}[F]\right)^{\prime}$, the collection $\left\{\sum_{p=1}^{m} A_{p j}^{*} f_{p}: m\right.$ and j positive integers $\}$ is w^{*}-bounded, i.e. bounded in $w\left(E^{\prime}, E\right)$.

Proof. Let A be $l-l$ and fix $f=\left\{f_{k}\right\}$ in $\left(l^{1}[F]\right)^{\prime}$. By the lemma, A^{*} is the adjoint of A and so A^{*} is w^{*}-continuous. Since $U_{m} f \rightarrow f$ in the w^{*} topology of $\left(l^{1}[F]\right)^{\prime}, A^{*}\left(U_{m} f\right) \rightarrow A^{*} f$ in the w^{*}-topology of $\left(l^{1}[E]\right)^{\prime}$. In particular, $\left\{A^{*}\left(U_{m} f\right)\right\}_{m=1}^{\infty}$ is w^{*}-bounded in $\left(l^{1}[E]\right)^{\prime}$. Since $l^{1}[E]$ is sequentially complete, it is also strongly bounded. Fix x in E. Then $\left\{I_{j}(x)\right.$: j a positive integer $\}$ is a bounded subset of $l^{1}[E]$. Thus there is a positive M such that $\left|\left(A^{*}\left(U_{m} f\right)\right)\left(I_{j}(x)\right)\right| \leqq M$ for all m and all j. It follows that $\left|\sum_{p=1}^{m} A_{p j}^{*} f_{p}(x)\right| \leqq M$ for all m and all j so the collection mentioned in the theorem is w^{*}-bounded.

Now let the condition on A^{*} hold. To see that A is $l-l$ we will apply (*). Fix q_{r} over F and M_{α} a bounded subset of E. Consider that

$$
\sum_{n=1}^{m} q_{r}\left(A_{n j}(x)\right)=\sum_{n=1}^{m} q_{r}\left(\left(A\left(I_{j} x\right)\right)_{n}\right)=Q_{r}\left(U_{m} \circ A \circ I_{j}(x)\right)
$$

Thus we need to show that the set

$$
B=\left\{U_{m} \circ A \circ I_{j}(x): j \text { and } m \text { in } N, x \text { in } M_{\alpha}\right\}
$$

is bounded in $l^{1}[F]$. Fix f in the dual of $l^{1}[F]$. Then

$$
f\left(U_{m} \circ A \circ I_{j}(x)\right)=\sum_{p=1}^{m} f_{p}\left(A_{p j}(x)\right)=\sum_{p=1}^{m} A_{p j}^{*} f_{p}(x)
$$

By our hypothesis there is a positive M such that $\left|\sum_{p=1}^{m} A_{p j}^{*} f_{p}(x)\right| \leqq M$ for all m, all j and all x in M_{α}. Thus B is a weakly bounded subset of $l^{1}[F]$ and therefore a bounded subset of $l^{1}[F]$. It follows that $\left({ }^{*}\right)$ holds and A is $l-l$.

Recall that in the scalar situation, i.e. E and F are the scalars and the entries of A are scalars, A is $l-l$ if and only if the transpose of A is $m-m$, where m denotes the space of all bounded scalar sequences. An analogue does exist in our case. The following result is easily established.

Lemma 2.4. Let $A: m(E) \rightarrow s(F)$. Then A is m - m if and only if for each bounded set M_{α} in E and each fixed j there exists $K_{\alpha, j}$ such that $q_{j}\left(\sum_{k=1}^{\infty} A_{n k} x_{k}\right) \leqq K_{\alpha, j}$ for all n and all x_{k} in M_{α}.

Corollary 2.5. Let X and Y be Banach spaces and let $A: l^{1}[X] \rightarrow s(Y)$. Then A is l-l if and only if A^{*} is $m-m$, i.e. $A^{*}: m\left(Y^{\prime}\right) \rightarrow m\left(X^{\prime}\right)$.

Proof. Let A be $l-l$ and let M_{α} be a bounded subset of Y^{\prime}, say $\|f\| \leqq K$ for all f in M_{α}. Fix x in X with $\|x\| \leqq 1$. Since A is $l-l$ there exists P such that $\sum_{k=1}^{\infty}\left\|A_{k n}(x)\right\| \leqq P$ for all n. Then

$$
\begin{aligned}
\left|\sum_{k=1}^{\infty} A_{k n}^{*} f_{k}(x)\right| & =\left|\sum_{k=1}^{\infty} f_{k} A_{k n}(x)\right| \\
& \leqq K \sum_{k=1}^{\infty}\left\|A_{k n}(x)\right\| \leqq K P
\end{aligned}
$$

for all f_{k} in M_{α} and all n. Thus for each $n, \sum_{k=1}^{\infty} A_{k n}^{*} f_{k}$ is pointwise convergent and so is in X^{\prime}. Moreover, $\left\|\sum_{k=1}^{\infty} A_{k n}^{*} f_{k}\right\| \leqq K P$ for all f_{k} in M_{α} and all n. Hence A^{*} is $m-m$.

Now let A^{*} be $m-m$ and let $f=\left\{f_{k}\right\} \in m\left(Y^{\prime}\right)=\left(l^{1}[Y]\right)^{\prime}$. Then $M_{\alpha}=\{0\} \cup$ $\left\{f_{k}: k\right.$ a positive integer $\}$ is a bounded subset of Y^{\prime}. By the lemma there is a K_{α} such that $\left\|\sum_{k=1}^{m} A_{k n}^{*} f_{k}\right\| \leqq K_{\alpha}$ for all n and all m. It follows from 2.3 that A is $l-l$.

References

1. L. W. Baric, The chi function in generalized summability, Studia Math. 39 (1971), 165-180.
2. J. L. Kelley, I. Namioka et al., Linear topological spaces, Van Nostrand, Princeton, N.J., 1963.
3. H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966. MR 33 \#1689.
4. F. Treves, Topological vector spaces, distributions and kernels, Academic Press, New York, 1967. MR 37 \#726.
5. B. Wood, On l-l summability, Proc. Amer. Math. Soc. 25 (1970), 433-436. MR 41 \#684.

Department of Mathematics, Dickinson College, Carlisle, Pennsylvania 17013

[^0]: Received by the editors February 22, 1973 and, in revised form, May 21, 1973.

