
proceedings of the
american mathematical society
Volume 43, Number 2, April 1974

STARLIKE  FUNCTIONS

CARL  P.   McCARTY

Abstract. Let y*[a] denote the class of functions f(z)=z+

2„°=2anZ" analytic in |z|<l and for which \zf'(z)lf(z)-\\<\-a

for |r|<l and a 6 [0, 1). Sharp results concerning coefficients,

distortion, and the radius of convexity are obtained. Furthermore,

it is shown that 2n=2 K"-a)/(l —ac)]|an| < 1 is a sufficient con-

dition for f(z) e y*[oi].

1. Introduction. Suppose that /(z)=z+2£L2anz" is analytic and

Re{z/'(z)//(z)}>a for |z|<l and a e [0, 1), then/(z) is called starlike of

order a, denoted by/(z) e £f*. It was shown by Schild [7] that for/(z) e

¿f* the domain of values of {zf'(z)/f(z)} is the circle with line segment

from (l + (2a-l)|z|)/(l + |z|) to (l-(2a-l)|z|)/(l-|z|) as a diameter.

In this paper we consider a subclass of £f* consisting of those f(z) for

which |z/'(z)//(z)-l|<l-a for |z|<l and denote it by y*[a]. Sharp

results concerning coefficients, distortion, and the radius of convexity

are obtained. Furthermore, it is shown that 2«=2 l(n~a)/(l— a)]laJ = l

is a sufficient condition for/(z) to be in £f* [a]. Results about 2«=2 n\an\ = 1

have previously been the subject of papers by Goodman [3], MacGregor

[4], and Schild [6].

2. Coefficient theorems.

Theorem 1.   Let f(z)=z+^=2anzn and suppose that

¡[(«-a)/(l-a)]K|-Sl;

thenf(z) e if*[a] for a e [0, 1).

Proof.   Let \z\ = 1, then

|z/'(z)-/(z)|-(l-a)|/(z)|
00

= 2(«-iKz"
n=2

- (1 - a) z + J anzn

<: J (n - a) |flJ - (1 r- a) < 0
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by the hypothesis. Hence \zf'(z)\f(z)— 11< 1 — a for |z|< 1 by the maximum

modulus theorem. We note that/(z)=z— [(1— a)/(« — a)]z" is an extremal

function with respect to the theorem since \zf'(z)\f(z)—l\ = l—u. for

z=l, a £ [0, 1), and n=2, 3, • • *. We also observe that the converse to

the theorem is false in that/(z)=ze(1"-t)z e ^*[ot] but

Ï^K\=Ï7^(T^vÇ>^-l>i for all a. [0,1).
„f2l -a ~21 -a  in - 1)1

Vox fiz)=z+^ñ=2anzn e ¿f* it has been shown [7] that the sharp

inequality |a„|^n*U (fc-2a)/(n-l)! holds for n=2, 3, ■ ■ ■ and is
attained by/(z)=z(l — z)~2(1~a). It is interesting to note that (1 — «)/(«— 1)

appears as a factor of the upper bound for each \an\. For our class it

is the upper bound.

Theorem 2. Letfiz)=z+2n=2 anzn e Sf*l*\, then |an|^(l-a)/(«-l)

for n=2, 3, ■ ■ • and a e [0, 1).

Proof. If/(z) e ^*[a], then |z/'(z)//(z)-l|<l-a and since the

absolute value vanishes for z=0 we obtain

(1) zf\z)\fiz) = 1 + coiz)

where co(z)=~2k=x co^ is analytic and |w(z)|<l —a for |z|<l. From

(1) we see that z/'(z)—/(z)=/(z)co(z) or equivalently

OO / 00 \     /     CO \

(2) l^-w^U + 2a*z*  2w*z* •
»c=2 \ k=2 I \jfc=l '

Equating coefficients on both sides of (2) shows that

n-l

in - i)an = can-i + 2 axcú„_k   for n = 2, 3, • • •
t-a

which implies that the coefficient an on the left side of (2) is dependent

only on a2, a3, • • • , an_x on the right side of (2). Hence for w^2

n oo j n—1 \

(3) 2(fc - d«*2* + 2 ^z/I - z + 2 fl*z* K2)
fc=2 *;=n+l \ »c=2 '

for a proper choice of Ak. Squaring the moduli of both sides of (3) and

integrating around |z|=r<l we get, using the fact that |co(z)|<l— a for

\z\<h

¿(fc - l)2 Kl2 r* + 2 M*f r2k<(l + nf\ak\2)(l - a)2.



1974] STARLIKE FUNCTIONS 363

Let r->l and we find that

n / n-1 \

\2

»c=2 \ k=2 I

or

2(/c-d2k^(i + 2i^i2)(i-«)2
k=2 \ *:=2 /

(n - If |a„|2 ^ (1 - oc)2 - 2 [(k - l)2 - (1 - a)2] |afc|2 g (1 - a)2

and it follows that |a„|^(l —a)/(«—1). This-proof is based on a technique

found in Clunie and Keogh [2]. For sharpness, consider the function

/(z) = z exp[(l - «)/(n - Diz""1 = z + [(1 - a)/(n - l)]z» + ■ ■ • .

3. Distortion theorems. In order to obtain distortion properties of

f(z) and/'(z) we need the representation given by the following lemma.

Lemma 1.   f(z) e £f*l«\ if and only if

f(z) = z ■ exp  I cf>(t) dt

where <p(z) is analytic for \z\ < 1 and |<*4(z)| ^ I—«.for \z\ < 1 and a. e [0, 1).

Proof. The "only if" is easily obtained by integrating (1) with co(z) =

z(f>(z) while/(z) e £f* [a] follows from differentiation and simple manipu-

lation.

Theorem 3.   7//(z) e 5"* [a], then

(0 |z|V«4»w-ai/(z)I^W*u^,w.

and

(ii)    (1 + (a - 1) Izl)^-111*1 ̂  |/'(z)| ¡g (1 + (1 _ «) IzDe11-» I".

Proof.    Since

[V(0 d/l ̂ f "W)l W\ = P\l - a) \dt\ = (1 - a) |z|,
Jo Jo Jo

then (i) follows by virtue of Lemma 1, and (ii) by applying the triangle

inequality to /'(z)-=(l+z-p(z)) ■ f(z)\z. Both parts of the theorem are

sharp for/(z)=ze(1-a,z.

4. The radius of convexity. It is well known that every univalent

function maps |z|<2—^3=0.267 • • • onto a convex region and that for

the class of starlike functions ¿f% this estimate cannot be improved since

the extremal function for the class of univalent functions, the Koebe

function K(z)=z/(l—e'6z)2, is also starlike. Here we determine the exact
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radius of convexity of ¿f*l«] as a function of a for each <xe [0, 1).

In particular, it is shown that for ^*[0] the radius of convexity is

(3-V5)/2=0.382***.

Theorem 4.   Suppose that f(z) e £f*l«]; then f(z) maps \z\<r onto a

convex domain for

(i) r = (3 - V5)/(2 - 2a),    i/ae[0,ao],

and

r = [((-2a2 + a - 1) + 2a(6 - 6a + a2)1/2)/(l + 3a - 4a2)]1/2,

00 i/ae[a0, 1),

where a0=l-(H-N/6)(3N/5—5)/10-=0.411 • • ■ . The result is sharp.

Proof.    As a notational convenience let ß = 1 — a. In [1] it is shown that

if <p(z) is analytic for |z|<l with |</>(z)|^l, then

|f(z)|rg(l-|¿(z)|2)/(l-|z|2).

If, however, \<f>(z)\^ß then we may apply the previous result to <f>(z)/ß

and obtain

(4) \4>'(z)\^(ß-\^(z)\2ß-l)l(l-\z\2).

Let co(z)=—z(/>(z) in (1); then after taking the logarithmic derivative

of both sides we have

Regrouping and then applying (4) and the triangle inequality to the right

side of (5) gives us

Re{z/"(z)//'(z) + 1} £ 1 - (|z<p(z)| (1 + (1 - Iz^(z)l)-1)

+ \z\2\<j>'iz)\ii-\z<piz)\)-i)

(6) > 1 - (M(z)| (2 - |z<p(z)|)(l - |z|2)

+ |z|2(/?-|,p(z)|2/r1))

• ((1 - |z#z)|)(l - Izl2))-1.

For/(z) to be convex in |z|<r it suffices to have Re{z/"(z)//'(z)+l}>0

in |z|<r, see [5]. In our case, (5) will certainly be positive when the right

side of (6) is positive which is whenever

ß \zcf>(z)\ (2 - |z<p(z)|)(l - |z|2) + lz|2 (ß2 - \4>(z)\2)

(7) < ß(l - [z6(z)\)(l - \z\2).
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In order to discuss (7) let us consider the function

pix) = [(1 - r2)ß + \]x2 - 3(1 - r2)ßx - iß2r2 - ß(l - r2))

where r=\z\ e [0, 1) and x=|z<p(z)| s [0, rß]. Clearly

p'ix) = 2[(1 - r2)ß + l]x - 3(1 - r2)ß = 0

for x=x0 = 3(l-r2)/9/(2((l-r2)/3-|-l)) and p"(x)>0. Hence, for each

ß, p(x) is a parabola opening upward. Thus an investigation of (7) now

reduces to trying to determine some relationship among ß, r, and x so

that p(x)>0. In order to do so we explore the geometric significance of

the two cases: (a)p'(rß)<^0 and (b)p'(rß)^0.

(a) If p'(rß)<=0, then rß^x0 and so p(x)^p(rß) for x e [0, rß]. Now,

let p(rß) be considered as a function of r with ß held constant, then (7)

will be satisfied when

pirß) = ßil - r2)(l - 3ßr + ß2r2) > 0

which is exactly when r<(3—N/5)/(2/3). This result, however, is valid

only for those ß for which rß^x0 or equivalently, for ß satisfying

2V5/32 + (2^5 - 6)ß + (15 - 7,/5) > 0.

Hence for ße\ß0,l] where ß0=(l+y/6)(3y/5-5)ll0. The result is

proved sharp by choosing the function fiz)=zepz for ß e lß0, 1].

(b) On the other hand, p'irß)^.0 implies rß^.x0 and /»(x)^/»(x0) for

x e [0, rß]. Again let ß be fixed. Now (7) will be satisfied when

P(x0) = -ß((5ß - 4/3V + 2(2,S2 - 3ß + 2)r2 + (5j8 - 4))

• (4((1 - r2)ß + \))-2 > 0
which is whenever

r < r0 = [(-(2^2 - 3ß + 2) + 2(1 - ß)iß2 + 4ß + l)1/2)/(5/? - 4ß*)]1/2

provided that rß^.x0, that is, for ß e (0, ß0].

We conclude with an existence proof for a sharp function. Suppose

that ip(z)=ß(z—z0)l(l—z0z) where z0 is real; then

z0 = (V(z) - ßz)l(zy,(z) - ß)

and so

y>'iz) = ßil - z2)/(l - z0z)2 = iß2 - rp\z))Hßil - z2)).

If we now let z/'(z)//"(z)=l— zrpiz), then

zf"iz)lf'iz) + 1

= (((1 - z2)ß + l)(zv»(z))2 - 3(1 - z2)ßizWiz))

- (i32z2 - ßil - z2)))lißil - zWiz))il - z2)) = 0
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when z=r0 and zy(z)=/*0-/i(/*0)=x0. Since x0^r0ß we have

r0V>(r0) = r0ßir0 - z0)/(l - r0z„) ^ r0ß

and so (r0—z0)/(l— r0z0)^l which implies that |z0I^L Hence |t/»(z)|*g/S

for |z| < 1 and so by Lemma 1

fix) = z ■ expi \\-ßit - z0)/(l - z0t)) dt) e Sf\\ - ß].
Uo J
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