STARLIKE FUNCTIONS

CARL P. McCARTY

ABSTRACT. Let $\mathscr{S}^*[\alpha]$ denote the class of functions $f(z)=z+\sum_{n=2}^{\infty}a_nz^n$ analytic in |z|<1 and for which $|zf'(z)|f(z)-1|<1-\alpha$ for |z|<1 and $\alpha\in[0,1)$. Sharp results concerning coefficients, distortion, and the radius of convexity are obtained. Furthermore, it is shown that $\sum_{n=2}^{\infty}[(n-\alpha)/(1-\alpha)]|a_n|<1$ is a sufficient condition for $f(z)\in\mathscr{S}^*[\alpha]$.

1. **Introduction.** Suppose that $f(z)=z+\sum_{n=2}^{\infty}a_nz^n$ is analytic and $\operatorname{Re}\{zf'(z)/f(z)\}>\alpha$ for |z|<1 and $\alpha\in[0,1)$, then f(z) is called starlike of order α , denoted by $f(z)\in\mathscr{S}_{\alpha}^*$. It was shown by Schild [7] that for $f(z)\in\mathscr{S}_{\alpha}^*$ the domain of values of $\{zf'(z)/f(z)\}$ is the circle with line segment from $(1+(2\alpha-1)|z|)/(1+|z|)$ to $(1-(2\alpha-1)|z|)/(1-|z|)$ as a diameter. In this paper we consider a subclass of \mathscr{S}_{α}^* consisting of those f(z) for which $|zf'(z)/f(z)-1|<1-\alpha$ for |z|<1 and denote it by $\mathscr{S}^*[\alpha]$. Sharp results concerning coefficients, distortion, and the radius of convexity are obtained. Furthermore, it is shown that $\sum_{n=2}^{\infty} [(n-\alpha)/(1-\alpha)]|a_n| \le 1$ is a sufficient condition for f(z) to be in $\mathscr{S}^*[\alpha]$. Results about $\sum_{n=2}^{\infty} n|a_n| \le 1$ have previously been the subject of papers by Goodman [3], MacGregor [4], and Schild [6].

2. Coefficient theorems.

THEOREM 1. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ and suppose that

$$\sum_{n=0}^{\infty} \left[(n-\alpha)/(1-\alpha) \right] |a_n| \leq 1;$$

then $f(z) \in \mathcal{S}^*[\alpha]$ for $\alpha \in [0, 1)$.

PROOF. Let |z|=1, then

$$|zf'(z) - f(z)| - (1 - \alpha)|f(z)|$$

$$= \left| \sum_{n=2}^{\infty} (n-1)a_n z^n \right| - (1 - \alpha) \left| z + \sum_{n=2}^{\infty} a_n z^n \right|$$

$$\leq \sum_{n=2}^{\infty} (n - \alpha) |a_n| - (1 - \alpha) \leq 0$$

Received by the editors June 8, 1972.

AMS (MOS) subject classifications (1970). Primary 30A32.

Key words and phrases. Schlicht functions, starlike functions, radius of convexity.

by the hypothesis. Hence $|zf'(z)|f(z)-1|<1-\alpha$ for |z|<1 by the maximum modulus theorem. We note that $f(z)=z-[(1-\alpha)/(n-\alpha)]z^n$ is an extremal function with respect to the theorem since $|zf'(z)|f(z)-1|=1-\alpha$ for $z=1, \alpha \in [0, 1)$, and $n=2, 3, \cdots$. We also observe that the converse to the theorem is false in that $f(z)=ze^{(1-\alpha)z}\in \mathscr{S}^*[\alpha]$ but

$$\sum_{n=2}^{\infty} \frac{n-\alpha}{1-\alpha} |a_n| = \sum_{n=2}^{\infty} \frac{n-\alpha}{1-\alpha} \frac{(1-\alpha)^{n-1}}{(n-1)!} > 2e^{1-\alpha} - 1 > 1 \quad \text{for all } \alpha \in [0, 1).$$

For $f(z)=z+\sum_{n=2}^{\infty}a_nz^n\in\mathcal{S}_{\alpha}^*$ it has been shown [7] that the sharp inequality $|a_n|\leq\prod_{k=2}^n(k-2\alpha)/(n-1)!$ holds for $n=2,3,\cdots$ and is attained by $f(z)=z(1-z)^{-2(1-\alpha)}$. It is interesting to note that $(1-\alpha)/(n-1)$ appears as a factor of the upper bound for each $|a_n|$. For our class it is the upper bound.

THEOREM 2. Let $f(z)=z+\sum_{n=2}^{\infty}a_nz^n\in\mathcal{S}^*[\alpha]$, then $|a_n|\leq (1-\alpha)/(n-1)$ for $n=2, 3, \cdots$ and $\alpha\in[0, 1)$.

PROOF. If $f(z) \in \mathcal{S}^*[\alpha]$, then $|zf'(z)|f(z)-1|<1-\alpha$ and since the absolute value vanishes for z=0 we obtain

(1)
$$zf'(z)/f(z) = 1 + \omega(z)$$

where $\omega(z) = \sum_{k=1}^{\infty} \omega_k z^k$ is analytic and $|\omega(z)| < 1 - \alpha$ for |z| < 1. From (1) we see that $zf'(z) - f(z) = f(z)\omega(z)$ or equivalently

(2)
$$\sum_{k=2}^{\infty} (k-1)a_k z^k = \left(z + \sum_{k=2}^{\infty} a_k z^k\right) \left(\sum_{k=1}^{\infty} \omega_k z^k\right).$$

Equating coefficients on both sides of (2) shows that

$$(n-1)a_n = \omega_{n-1} + \sum_{k=0}^{n-1} a_1 \omega_{n-k}$$
 for $n = 2, 3, \cdots$

which implies that the coefficient a_n on the left side of (2) is dependent only on a_2, a_3, \dots, a_{n-1} on the right side of (2). Hence for $n \ge 2$

(3)
$$\sum_{k=2}^{n} (k-1)a_k z^k + \sum_{k=n+1}^{\infty} A_k z^k = \left(z + \sum_{k=2}^{n-1} a_k z^k\right) \omega(z)$$

for a proper choice of A_k . Squaring the moduli of both sides of (3) and integrating around |z|=r<1 we get, using the fact that $|\omega(z)|<1-\alpha$ for |z|<1,

$$\sum_{k=2}^{n} (k-1)^2 |a_k|^2 r^{2k} + \sum_{k=n+1}^{\infty} |A_k|^2 r^{2k} < \left(1 + \sum_{k=2}^{n-1} |a_k|^2\right) (1-\alpha)^2.$$

Let $r \rightarrow 1$ and we find that

$$\sum_{k=2}^{n} (k-1)^{2} |a_{k}|^{2} \le \left(1 + \sum_{k=2}^{n-1} |a_{k}|^{2}\right) (1-\alpha)^{2}$$

or

$$(n-1)^2 |a_n|^2 \le (1-\alpha)^2 - \sum_{k=2}^{n-1} [(k-1)^2 - (1-\alpha)^2] |a_k|^2 \le (1-\alpha)^2$$

and it follows that $|a_n| \le (1-\alpha)/(n-1)$. This proof is based on a technique found in Clunie and Keogh [2]. For sharpness, consider the function

$$f(z) = z \exp[(1-\alpha)/(n-1)]z^{n-1} = z + [(1-\alpha)/(n-1)]z^n + \cdots$$

3. Distortion theorems. In order to obtain distortion properties of f(z) and f'(z) we need the representation given by the following lemma.

LEMMA 1. $f(z) \in \mathcal{S}^*[\alpha]$ if and only if

$$f(z) = z \cdot \exp\left\{\int_0^z \phi(t) dt\right\}$$

where $\phi(z)$ is analytic for |z| < 1 and $|\phi(z)| \le 1 - \alpha$ for |z| < 1 and $\alpha \in [0, 1)$.

PROOF. The "only if" is easily obtained by integrating (1) with $\omega(z) = z\phi(z)$ while $f(z) \in \mathcal{S}^*[\alpha]$ follows from differentiation and simple manipulation.

Theorem 3. If $f(z) \in \mathcal{S}^*[\alpha]$, then

(i)
$$|z| e^{(\alpha-1)|z|} \le |f(z)| \le |z| e^{(1-\alpha)|z|}$$

and

(ii)
$$(1 + (\alpha - 1)|z|)e^{(\alpha - 1)|z|} \le |f'(z)| \le (1 + (1 - \alpha)|z|)e^{(1 - \alpha)|z|}$$
.

PROOF. Since

$$\left| \int_0^z \phi(t) \, dt \right| \le \int_0^{|z|} |\phi(t)| \, |dt| \le \int_0^{|z|} (1 - \alpha) \, |dt| = (1 - \alpha) \, |z|,$$

then (i) follows by virtue of Lemma 1, and (ii) by applying the triangle inequality to $f'(z) = (1+z\phi(z)) \cdot f(z)/z$. Both parts of the theorem are sharp for $f(z) = ze^{(1-\alpha)z}$.

4. The radius of convexity. It is well known that every univalent function maps $|z| < 2 - \sqrt{3} = 0.267 \cdots$ onto a convex region and that for the class of starlike functions \mathcal{S}_0^* this estimate cannot be improved since the extremal function for the class of univalent functions, the Koebe function $K(z)=z/(1-e^{i\theta}z)^2$, is also starlike. Here we determine the exact

radius of convexity of $\mathscr{S}^*[\alpha]$ as a function of α for each $\alpha \in [0, 1)$. In particular, it is shown that for $\mathscr{S}^*[0]$ the radius of convexity is $(3-\sqrt{5})/2=0.382\cdots$.

THEOREM 4. Suppose that $f(z) \in \mathcal{S}^*[\alpha]$; then f(z) maps |z| < r onto a convex domain for

(i)
$$r = (3 - \sqrt{5})/(2 - 2\alpha), \text{ if } \alpha \in [0, \alpha_0],$$

and

(ii)
$$r = [((-2\alpha^2 + \alpha - 1) + 2\alpha(6 - 6\alpha + \alpha^2)^{1/2})/(1 + 3\alpha - 4\alpha^2)]^{1/2},$$

$$if \alpha \in [\alpha_0, 1),$$

where $\alpha_0 = 1 - (1 + \sqrt{6})(3\sqrt{5} - 5)/10 = 0.411 \cdots$. The result is sharp.

PROOF. As a notational convenience let $\beta = 1 - \alpha$. In [1] it is shown that if $\phi(z)$ is analytic for |z| < 1 with $|\phi(z)| \le 1$, then

$$|\phi'(z)| \le (1 - |\phi(z)|^2)/(1 - |z|^2).$$

If, however, $|\phi(z)| \leq \beta$ then we may apply the previous result to $|\phi(z)|/\beta$ and obtain

(4)
$$|\phi'(z)| \le (\beta - |\phi(z)|^2 \beta^{-1})/(1 - |z|^2).$$

Let $\omega(z) = -z\phi(z)$ in (1); then after taking the logarithmic derivative of both sides we have

(5)
$$\operatorname{Re}\left\{\frac{zf''(z)}{f'(z)+1}\right\} = \operatorname{Re}\left\{(1-z\phi(z)) - \frac{z^2\phi'(z)+z\phi(z)}{1-z\phi(z)}\right\}.$$

Regrouping and then applying (4) and the triangle inequality to the right side of (5) gives us

$$\operatorname{Re}\{zf''(z)/f'(z)+1\} \ge 1 - (|z\phi(z)| (1+(1-|z\phi(z)|)^{-1}) + |z|^2 |\phi'(z)| (1-|z\phi(z)|)^{-1})$$
(6)
$$\ge 1 - (|z\phi(z)| (2-|z\phi(z)|)(1-|z|^2) + |z|^2 (\beta-|\phi(z)|^2 \beta^{-1})) \cdot ((1-|z\phi(z)|)(1-|z|^2))^{-1}.$$

For f(z) to be convex in |z| < r it suffices to have $\text{Re}\{zf''(z)/f'(z)+1\} > 0$ in |z| < r, see [5]. In our case, (5) will certainly be positive when the right side of (6) is positive which is whenever

(7)
$$\beta |z\phi(z)| (2 - |z\phi(z)|)(1 - |z|^2) + |z|^2 (\beta^2 - |\phi(z)|^2) < \beta(1 - |z\phi(z)|)(1 - |z|^2).$$

In order to discuss (7) let us consider the function

$$p(x) = [(1 - r^2)\beta + 1]x^2 - 3(1 - r^2)\beta x - (\beta^2 r^2 - \beta(1 - r^2))$$

where $r=|z|\in[0, 1)$ and $x=|z\phi(z)|\in[0, r\beta]$. Clearly

$$p'(x) = 2[(1 - r^2)\beta + 1]x - 3(1 - r^2)\beta = 0$$

for $x=x_0=3(1-r^2)\beta/(2((1-r^2)\beta+1))$ and p''(x)>0. Hence, for each β , p(x) is a parabola opening upward. Thus an investigation of (7) now reduces to trying to determine some relationship among β , r, and x so that p(x)>0. In order to do so we explore the geometric significance of the two cases: (a) $p'(r\beta) \le 0$ and (b) $p'(r\beta) \ge 0$.

(a) If $p'(r\beta) \leq 0$, then $r\beta \leq x_0$ and so $p(x) \geq p(r\beta)$ for $x \in [0, r\beta]$. Now, let $p(r\beta)$ be considered as a function of r with β held constant, then (7) will be satisfied when

$$p(r\beta) = \beta(1 - r^2)(1 - 3\beta r + \beta^2 r^2) > 0$$

which is exactly when $r < (3 - \sqrt{5})/(2\beta)$. This result, however, is valid only for those β for which $r\beta \le x_0$ or equivalently, for β satisfying

$$2\sqrt{5}\beta^2 + (2\sqrt{5} - 6)\beta + (15 - 7\sqrt{5}) \ge 0.$$

Hence for $\beta \in [\beta_0, 1]$ where $\beta_0 = (1 + \sqrt{6})(3\sqrt{5} - 5)/10$. The result is proved sharp by choosing the function $f(z) = ze^{\beta z}$ for $\beta \in [\beta_0, 1]$.

(b) On the other hand, $p'(r\beta) \ge 0$ implies $r\beta \ge x_0$ and $p(x) \ge p(x_0)$ for $x \in [0, r\beta]$. Again let β be fixed. Now (7) will be satisfied when

$$p(x_0) = -\beta((5\beta - 4\beta^2)r^4 + 2(2\beta^2 - 3\beta + 2)r^2 + (5\beta - 4))$$
$$(4((1 - r^2)\beta + 1))^{-2} > 0$$

which is whenever

$$r < r_0 = [(-(2\beta^2 - 3\beta + 2) + 2(1 - \beta)(\beta^2 + 4\beta + 1)^{1/2})/(5\beta - 4\beta^2)]^{1/2}$$

provided that $r\beta \ge x_0$, that is, for $\beta \in (0, \beta_0]$.

We conclude with an existence proof for a sharp function. Suppose that $\psi(z) = \beta(z-z_0)/(1-z_0z)$ where z_0 is real; then

$$z_0 = (\psi(z) - \beta z)/(z\psi(z) - \beta)$$

and so

$$\psi'(z) = \beta(1-z_0^2)/(1-z_0z)^2 = (\beta^2 - \psi^2(z))/(\beta(1-z^2)).$$

If we now let $zf'(z)/f(z) = 1 - z\psi(z)$, then

$$zf''(z)/f'(z) + 1$$

$$= (((1-z^2)\beta + 1)(z\psi(z))^2 - 3(1-z^2)\beta(z\psi(z)) - (\beta^2 z^2 - \beta(1-z^2)))/(\beta(1-z\psi(z))(1-z^2)) = 0$$

when $z=r_0$ and $z\psi(z)=r_0\psi(r_0)=x_0$. Since $x_0\leq r_0\beta$ we have

$$r_0 \psi(r_0) = r_0 \beta(r_0 - z_0) / (1 - r_0 z_0) \le r_0 \beta$$

and so $(r_0-z_0)/(1-r_0z_0) \le 1$ which implies that $|z_0| \le 1$. Hence $|\psi(z)| \le \beta$ for |z| < 1 and so by Lemma 1

$$f(z) = z \cdot \exp\left\{\int_0^z (-\beta(t-z_0)/(1-z_0t)) dt\right\} \in \mathcal{S}^*[1-\beta].$$

REFERENCES

- 1. C. Carathéodory, Theory of functions of a complex variable. Vol. 2, Chelsea, New York, 1954. MR 16, 346.
- 2. J. Clunie and F. R. Keogh, On starlike and convex schlicht functions, J. London Math. Soc. 35 (1960), 229-233. MR 22 #1682.
- 3. A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 598-601. MR 19, 260.
- 4. T. H. MacGregor, A class of univalent functions, Proc. Amer. Math. Soc. 15 (1964), 311-317. MR 28 #2206.
 - 5. Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952. MR 13, 640.
- 6. A. Schild, On a class of functions schlicht in the unit circle, Proc. Amer. Math. Soc. 5 (1954), 115-120. MR 15, 694.
- 7. —, On starlike functions of order α , Amer. J. Math. 87 (1965), 65–70. MR 30 #4929.

DEPARTMENT OF MATHEMATICS, LA SALLE COLLEGE, PHILADELPHIA, PENNSYLVANIA 19141