SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

0-DIVISORS IN GROUP RINGS

I. SINHA

ABSTRACT. If G is any group with two finite subgroups $H, K, K \leq G$, (|H|, |K|) = 1, then RG has $\cap_{\alpha} \mathfrak{G}_{\alpha} \neq 0$, where \mathfrak{G} is the augmentation ideal.

Let R be a commutative unitary ring of characteristic 0, and \mathfrak{G} denote the augmentation ideal $\mathfrak{A}(G)$ of the group ring RG for a group G. If G is finite and not of prime-power order then, as J. Roseblade and R. Phillips have recently proved (unpublished), RG contains a 0-divisor congruent to 1 modulo \mathfrak{G} . Their proof depends heavily on properties of Schmidt groups. We give here a simple proof generalizing this result to the infinite case. For $T \leq G$, let $\mathfrak{A}(T)$ be the left ideal in RT, generated by $\{t-1 | t \in T\}$.

THEOREM. Let G be a group containing two finite subgroups H and K where $H \subseteq N_G(K)$ and (|H|, |K|) = 1. Then $\mathfrak{A}(K) \cdot \mathfrak{A}(H) \cdot x = 0$ for some $x \equiv 1 \mod \mathfrak{G}$ in RG.

PROOF. Let $y = \sum_{h \in H} h$, $z = \sum_{k \in K} k$, |H| = m, |K| = n, where (m, n) = 1. Then $k \in K \Rightarrow (k-1)z = 0$, and similarly $h \in H \Rightarrow (h-1)y = 0$. Since (m, n) = 1, there exist r, s in Z (and hence in R) such that rm + sn = 1. Put x = ry + sz. If $\rho: RG \rightarrow R$ is the augmentation map, then $\rho(x) = r\rho(y) + s\rho(z) = rm + sn = 1$, so that $x \equiv 1 \mod G$, since $G = \ker P$. Also

$$\mathfrak{A}(K) \cdot \mathfrak{A}(H) \cdot x = r \cdot \mathfrak{A}(K) \cdot \mathfrak{A}(H)y + s \cdot \mathfrak{A}(K) \cdot \mathfrak{A}(H)z$$

$$= 0 + s \cdot \mathfrak{A}(K) \cdot \mathfrak{A}(H) \cdot z, \text{ since } \mathfrak{A}(H)y = 0,$$

$$= s \cdot \mathfrak{A}(K) \cdot z \cdot \mathfrak{A}(H), \text{ since } H \subseteq N_G(K),$$

$$= 0, \text{ since } \mathfrak{A}(K) \cdot z = 0.$$

This proves the result. Q.E.D.

Since the existence of such 0-divisors easily implies that the intersection of all powers of the augmentation ideal is not 0, we have:

Received by the editors June 8, 1973.

AMS (MOS) subject classifications (1970). Primary 16A26; Secondary 20E99.

COROLLARY. If G has a finite subgroup which is not of prime-power order then $\bigcap_{\alpha} \mathfrak{G}^{\alpha} \neq 0$.

PROOF. We may suppose that G is finite and not of prime-power order. It suffices to show that G has subgroups H, $K\neq 1$ of relatively prime order with $H\subseteq N_G(K)$.

Let P be a p-Sylow subgroup of G. If G has a normal p-complement K, take P=H. If not, there exists a subgroup $K\neq 1$ in P, such that $N_G(P)/C_G(P)$ is not a p-group. Take H to be a q-subgroup of $N_G(K)$ for some $q\neq p$.

With these subgroups H and K, we can now apply the Theorem and the comment above to complete the proof of the Corollary. Q.E.D.

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823