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SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually

elegant and polished character, for which there is no other outlet.

0-DIVISORS IN  GROUP  RINGS

I.   SINHA

Abstract. If G is any group with two finite subgroups H, K,

K^G, (\H\,\K\)=l, then RG has na (5^0, where © is the
augmentation ideal.

Let R be a commutative unitary ring of characteristic 0, and © denote

the augmentation ideal 51(G) of the group ring RG for a group G. If G is

finite and not of prime-power order then, as J. Roseblade and R. Phillips

have recently proved (unpublished), RG contains a 0-divisor congruent

to 1 modulo ©. Their proof depends heavily on properties of Schmidt

groups. We give here a simple proof generalizing this result to the infinite

case. For T^G, let 9I(T) be the left ideal in RT, generated by {/-1 \t e T}.

Theorem. Let G be a group containing two finite subgroups H and K

where H = NGiK) and i\H\,\K\)=l. Then ^K) ■ %iH) ■ x=0 for some

x=l mod © in RG.

Proof. Let y=^heH h, z=^keKk, \H\=m, \K\=n, where (w, n)=l.

Then k e A'=>(/c-l)z=0, and similarly h e //=>(/--l)y=0. Since im, n) =

1, there exist r,s in Z (and hence in R) suchthat rm+sn=l. Put x=ry+sz.

If p:RG^-R is the augmentation map, then pix)=rpiy)+spiz)=rm +

sn=l, so that x=l mod ©, since © = kernel p. Also

2I(A0 • 9J(//) -x = r- %iK) ■ %iH)y + s • 2l(Ä) * %iH)z

= 0 + s ■ 9I(Ä0 • %iH) • z,    since «(//> = 0,

= S ■ 3I(Â-) • z • %iH),    since H s NGiK),

= 0,    since %iK) ■ z = 0.

This proves the result.    Q.E.D.

Since the existence of such 0-divisors easily implies that the intersection

of all powers of the augmentation ideal is not 0, we have:
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Corollary. If G has a finite subgroup which is not of prime-power

order then f)x ©VO.

Proof. We may suppose that G is finite and not of prime-power

order. It suffices to show that G has subgroups H, K^l of relatively

prime order with i/£ Na(K).

Let P be a /7-Sylow subgroup of G. If G has a normal /»-complement K,

take P=H. If not, there exists a subgroup Kj^l in P, such that

NG(PyCG(P) is not a /»-group. Take H to be a ^-subgroup of NG(K) for

some (/-¿z».
With these subgroups H and A', we can now apply the Theorem and

the comment above to complete the proof of the Corollary.    Q.E.D.
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