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=^-REALCOMPACTIFICATIONS  AS  EPIREFLECTIONS

H.   L.   BENTLEY  AND   S.   A.   NAIMPALLY1

Abstract. If if is a countably productive normal base on a

Tychonoff space X, then r¡(X, -a*) is an-Sf^-realcompact extension of

X. R. A. Alo and H. L. Shapiro thus generalized the Hewitt real-

compactification of X. In the following paper, we extend this con-

struction to ^-spaces and show that it is an epireflection functor on

an appropriate category. We are thus concerned with the question

of the extendibility of a continuous map/: X-+Y\.o a continuous map

g:r¡(X,¿£'x)->-rj(Y,J?'r). We derive necessary and sufficient con-

ditions therefor in the case when Sfr is a nest generated inter-

section ring on Y.

All of the topological spaces which we consider are assumed to satisfy

the Fj-separation axiom. A family =5? of closed subsets of a space X is

called a countably productive separating base if the following are satisfied:

(i) J? is a ring, i.e. it is closed under finite unions and finite intersections

and 0,Xe^.

(ii) ¿£ is countably productive, i..e closed under countable intersections.

(iii) =Sf is separating, i.e. whenever x e X — S, S closed in X, there exist

Lx, L2eJ¡? such that x e Lx, 5c L2, and LxC\L2=0 (E. F. Steiner [9]).

If in addition to the above properties,

(iv) =S? is nest generated, i.e. L e =£? implies the existence of En, Fn e 3?,

neN, such that Fn+1^X-Ena Fn and L=f) {Fn:n e N} (A. K. Steiner

and E. F. Steiner [8], [10]), then J? is called a nest generated intersection

ring. (R. A. Alo and H. L. Shapiro [2] use the term strong delta normal

base.) In [8], A. K. Steiner and E. F. Steiner prove that a nest generated

intersection ring =Sf is normal, i.e. Lx, L2 e^C, and LxC\L2=0 implies

the existence of L'x, L!2e££ such that LxnL[=0, L2C\L'2=0, and

L'XKJL'2 = X.

A well-known example of a nest generated intersection ring is Z(X), the

family of all zero sets of a Tychonoff space X.
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Any countably productive separating base =£? on A determines a Tx-

extension of A which we now proceed to describe. These extensions have

been studied previously by R. A. Alo and H. L. Shapiro [1], [2], A. K.

Steiner and E. F. Steiner [8], and M. S. Gagrat and S. A. Naimpally [5]

with the additional hypothesis that «á? is normal, in which case X is

Tychonoff. In the first part of this paper we weaken this to the Fj-axiom.

In addition, we take a formally different approach to the subject at hand

by using the technically more convenient contiguity clusters (a concept

introduced in our earlier work [4]) instead of ultrafilters. We introduce the

following notation: if J? is a countably productive separating base on X

and AjC-X for /' e N, we write CX(A¡:i e N) iff there exist L¡ e Jz? such

that A^Li and Ç] {Lp.i e N}=0. We write CxiA¡:i e N) iff not

Cx(Aí:¡ e N). In words, we are thinking of CA-(/l¿:/' e N) as meaning

that the sets in the family {/4¿:/ e N} are contiguous. We extend the above

notations by writing CX(AX, ■ ■ ■ , An) iff Cx(B¡:i e N), where i?, = /l¿ for

/= 1, • • • , n, and B¡ = X for />//.

Clusters play a key role in studying Hausdorff compactifications of

Tychonoff spaces (for the definition of a cluster see [7]). However, for F,-

compactifications of F,-spaces the concept of contiguity cluster [4] is

useful. A collection a of subsets of A is called a contiguity cluster iff a is

maximal with respect to the property that Ax,---,A„ea implies

CX(AX, ■ ■ ■ , A„). We now go a step further and call a collection a an

oj-contiguity cluster iff a is maximal with respect to the property that

{A¡:i e A'} co- implies Cx(A¡:i e N).

Any separating base £f on A determines a Fj-compactification w(X, SP)

of X (E. F. Steiner [9]). w(X, Of) is the space of all contiguity clusters and

JSP = {L:L e ££} is a separating base on u(A, JSP) = A, where for ¿cA,

L = {a e w(X, JiC):L e a} (for the equivalence of this to Steiner's see [4]).

If we let exix) = {A <=X:xôA} for each x e X, then the map eA-:A—»-Ais a

topological embedding of A in X and for each L<= A, F = Clf (eXL).

Now let JSP be a countably productive separating base on A and let

rj(X, j5P) = {(T e A:cr is an «-contiguity cluster}. r¡(X,£f) becomes a

topological space by taking it to be a subspace of A. For each F<= X, let

L* = Lc\r¡(X,3'). Then ^* = {L*:L e^} is a countably productive

separating base on »?(A, =SP) = A* and for each L^X, L* = C1 x.(exL).

We now introduce another notion of contiguity of collections. We

write C'xiAf-.i'eN) iff f] {A*:i e N}^ 0. Observe that Cx(A,:ieN)
implies that CY(/(,:/erV). We therefore have two associated Lodato

proximities (M. S. Gagrat and S. A. Naimpally [5]): AôxB iff CX(A, B)

and Aô'xB iff C'X(A, B). Observe that if ere A*, then {A¡:i e N}c a

implies C'x(A¡:i e N).

R. A. Alo and H. L. Shapiro [1] say that A is =S?-realcompact iff every
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jSP-ultrafilter with the countable intersection property has a nonempty

intersection. It is easy to see that A is =SP-realcompact iff for every

a e A*, there exists x e X such that {x} e a, and this condition is equiv-

alent to A being homeomorphic to A* by the map ex: X—>X*. R. A. Alo

and H. L. Shapiro [1] proved (and their proof is valid in our more general

setting) that X* is JSP*-realcompact, and they call A* the JSP-realcompacti-

fication of A (by a slight abuse of language).

Our principal objective is to find à category for which r¡(X, JSP) = A*

becomes an epireflection functor. Thus we now turn to the study of maps

/: A—► Y where A and Y are endowed with countably productive separating

bases =SPA and JSPF respectively. We are interested in conditions which

guarantee that / has a continuous extension g:A*—»F*. By the phrase

g:A*-»Y* is an extension of/:A->-F, we mean that g ° ex=eY °fi

Theorem 1. Let f: X—> Y and g : X*-> Y* be continuous. Then g extends

f iff for each a e X*,f[a]^g(a).

Proof. Suppose that g extends/, that a e X*, and that Lea. Then

a e L* andg(a) eg(L*)=g(Clx.L)^ClY.(gL) = ClY.(fL) = (fL)*. Hence

fLegia).
Conversely, suppose that f[a]^g(a) for all a e X*. Let xeX. Then

{f(x)}=f[{x})ef[ex(x)]^gex(x). lfAegexix), then f(x)ôYA and so

A e erf(x). Thus gex(x)<^eYf(x) and because of the maximality of

clusters, gex(x)=eYf(x).

A function/: A—»- Y is called an to-contiguity map iff CA(y4¿:/e N) im-

plies CY(fA:i e TV), or equivalently iff CF(5¿:/' e N) implies C'xif~lBt:

/ e N).

lff.X-*Y is an to-contiguity map, then clearly/:(A, <5A)—>-(F, ôY) is

proximally continuous and therefore is continuous. Those maps which we

are able to extend are defined as follows. The concept is a modification of

D. Harris' [6] iTO-maos. If A^X and fie Y, then we will write A<fB

iff for all H^ X, H5XA implies ifH)SYB. If At<= A and B^ Y, then we will
write (Af:i e N)<f(B¡:j e N) iff for each /' e Anthère exists/ e N such that

AiK'Bj.ff.X-y Y is called an w-map iff whenever CY(B¡:j e N) then there

exists (A(-.ieN) with Cx(At:ieN) and iA^.i e N)<fiB¡:j e N). If

f:X-*-Y is an co-map, then we shall let, for each er e A*,/#(cr) = {Fc Y:

for all He a, (fH)ôYE}.
Our fundamental result is the following.

Theorem 2.    Letf.X^-Ybe an co-map. Then

(1) fis an m-contiguity map.

(2) f#: A*—>■ Y* is an co-map.

(3) If a e X* and iff[o]<=a' e Y*, then f#ia) = a''.
(4) f# extends f
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Proof of (1). This result follows easily from the fact that if A<JB,

then f-1 Be Q\XA.

Proof of (2). First observe that if H, Lea e A*, then a e H* r\L*

and so Hè'xL and  (fH)ôY(fL).  This implies that for each  ere A*,

In order to show that/# sends A* into Y*, let er e A*. Let [ßs:f e A)<=

/#(<r) and suppose that CY(B¡:j e N). Then there exists (At:i e N) with

€'x(At:i e N) and (A{:i e NX'iBj-.j e N). There exists i e N with cr $ At.

Ai $ a so there exists He a with HoxAt. Let/£ N with Ai<JB¡. Then

ifH)oYB¡ which contradicts that B} efoia). To show that f#(o) is maxi-

mal, let A<e F such that A $f#(a). Then for some He a, (fH)oYA. Since

f[a]ef#(a), then fH efo(a) and so f#(o) is maximal and/#(cr) e Y*.

Now, to show that f# : A*—>- Y* is an co-map, let CY.(Bj:j e N). Then

there exists {Lf.j e N}e££Y with B¡<eL* and f] {F* :j e N} = 0. So

CY(L¡:j e N) and since /:X—>- Y is an co-map, for some (A^ieN),

C'x(Ai:ieN) and (A^i e N)<f(Lj:j e N). Then f) {^*:/e/V}=0 and

since ex,:A*->-A** is a homeomorphism, then Af* = Clx„(ex.A*) =

ex.Af and f] {Af*:ieN}=0. Therefore Cx.(A*:i e N) and it suffices

to show that (/If :ieN)<í#(B¡:je N). Let A^L,. To show that Af<kBh

let Fc/A.,4?. For some //, Ke^x, P^H*, A*^K* and HC\K=0.

Then HoxAt and so (fH)èYL}. There exists Je^Y with fH<=j and

JC\L¡=0. Then A^L* and/#F<=y* and so (foP)SY,A¡ as required.
Proof of (3). Let creí* and/[er] cj'e F*. Let F ef#(a) and suppose

that F ^ cr'. Then there exists ß e cr' with BoYE. Thus, 5 ^/#(ff) and so

there exists // e cr with BoY(fH). This contradicts/// e /[er] c cr'.

Proof of (4). By (1) and (2) both/and f# are continuous. Therefore

by Theorem 1 and the observation at the beginning of the proof of (2)

above, f# extends/.

An immediate consequence of (3) of Theorem 2 is the following result.

Theorem 3. If an oi-mapf': A—>- Y has a continuous extension g : A*—> Y*,

l"en g=f#.

We do not know whether the composition of two co-maps is always an

co-map. In order to get a category, we modify the concept as follows.

fo.X—>Y is called a reduced to-map iff whenever CY(B¡:j e N) then there

exists (Ai'.i e A) with CA-(A(:/' e A)and (At:t e N)<'(B¡:j e A).Obviously

each reduced co-map is also an co-map. Clearly the composition of reduced

co-maps is again a reduced co-map. Thus, Frspaces endowed with count-

ably productive separating bases together with reduced co-maps form a

category A. It is obvious that the embedding ex:X—*-X* is a reduced

co-map.
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Theorem 4. The embedding ex : A—»-A* is an epimorphism in the category

A.

Proof. Let F be a F^space with a countably productive separating

base »SPF and let g, h : A*—>• Y be reduced co-maps such that g ° ex=h ° ex.

We must show thatg=//. Let/=g ° ex. Then/: A—>- Y is a reduced co-map

and since (eY ° //) ° ex = eY of=(eY o g) o e Y; then both of <?K ° // and

eY ° g are continuous extensions of/. By Theorem 3, eY ° h=fo = eY ° g

and since eY is injective then h=g.

The following theorem follows directly from Theorems 2, 3, and 4.

Extend the function r¡ to all of the category A by defining y\(f)=fo for

each reduced co-map/.

Theorem 5. r¡:A—>-A is an epireflection functor with the maps ex'.X—*

X* as universal arrows.

We now turn to the case where Y is Tychonoff and is endowed with a

nest generated intersection ring J5Pr. In this case we have a fairly simple

characterization of co-maps and at the same time, several necessary and

sufficient conditions for extendibility.

Theorem 6. Let J¿?A be a countably productive separating base on X

and let =SPr be a nest generated intersection ring on Y. Let /*: A—>■ Y be a

function. Then the following are equivalent:

(1) f.X—Y is an co-map.

(2) f: X-* Y is an to-contiguity map.

(3) fiX, d'x)-*i Y, ôY) is proximally continuous.

(4) f:(X, <5A)->( Y, d'Y) is proximally continuous.

(5) f has a continuous extension g:X*—>- Y*.

(6) / has a continuous extension g : A*-> Y* and g : A*—»■ Y* is an oj-map.

Proof. To show that (3) implies (2), assume (3) and let CY(Bj:j e N).

Then there exist L¡ e jSPy with B¡eL¡ and C] {L¡:je N}=0. There exist

Ejn, FinetfY with F},n^Y-E,neF}n and Lj = C] {Fjn:n e N}. Let

Pin=f-lFj,n+i and Qin=X-folFin. Since F^+JriY-f-^), then
Pjnb'xQjn- We now proceed by contradiction. Suppose Cx(f~1Bj:j e N)

and let cr e f] {if^BA* :j e A7}. Since A= (J {Qjn :j e N and n e N} and cr

is maximal, there exist j, n e N with Qjn e a. Then Pjn $ a which con-

tradicts that f~lBj e a and that/-1B;c/-iL.c,p.r¡.

To show that (2) implies (1), assume (2) and let Cr(5;:y'e A). Then

there exist Fj-eJSPF with B¡eL¡ and p| {L¡:j e N}=0. Next, there exist

Ejn, FineSPy with Fi>B+,<= Y-EJneFjn and L^f] {Fjn:neN}. Then

P {Fjn:j e N and n e N}= 0 so CY(Fjn:j e N and n e N) and therefore

C'x(foxFjn:jeN  and   n e N).   Let j, n e N.   Claim  that /-1F;„</ÄJ,
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Let Hoxifo^if). Then Hr\folFjn=0 and ifH)r\F¡n=0. Therefore

fH<=Ejn, B^L}<=-Fjn+1 and EjnrlFj.n+1=0. This shows that ifH)SYB¡.
That (1) implies (6) is the content of Theorem 2. That (6) implies (5) is a

triviality. That (5) implies (4) is well known and easy to prove. That (4)

implies (3) is obvious.

The preceding theorem (with Theorem 2) implies that Tychonoff spaces

endowed with nest generated intersection rings together with co-maps form

a category B and r]:B—B is an epireflection functor.

We remark that a sufficient but not necessary condition for the existence

of a continuous extension g:r¡(X, J¡Cx)->r¡( Y, JSPr) of a continuous map

foX—>Y has been discovered by D'Aristotle [3]. Theorem 6 above thus

represents an improvement.

We will now illustrate the utility of Theorem 6 with a simple example.

Let A be a Fx-space and let J? be the collection of all closed subsets of A.

Then SC is obviously a countably productive separating base on A, and so

we have an extension rX=r¡(X, JSP) which is a subspace of the Wallman

compactification uAof A. By an easy application of Theorem 6, rX has the

property that every real valued continuous map/: A-^-Ä has a unique

continuous extension/^:rX—rR. Since rR = vR, the Hewitt realcompacti-

fication of R, and vR = R, then every continuous map/:A—>R has a

continuous extension g:rX—>-R, i.e. A is C-embedded in rA. We have been

unable to answer the following question : Is rX the largest subspace of trA

in which Ais C-embedded? If Ais a normal space, then wX=ßX and so it

follows from the definitions (as an easy exercise) that in this case rX=

vX, the Hewitt realcompactification of A.

The following theorem is an exact analogue of D. Harris' theorem on the

Wallman compactification being a functor [6] ; it is a corollary to Theorem

2 above.

Theorem 7. The correspondence X—rX,f—fo is an epireflection functor

on the category of Tx-spaces and reduced co-maps (with respect to the

collections =SPA, =SPr of all closed subsets of X, Y respectively).
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