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locally modular lattices and locally
distributive lattices

SHÛICHIRÔ  MAEDA

Abstract. A locally modular (resp. locally distributive)

lattice is a lattice with a congruence relation and each of whose

equivalence class has sufficiently many elements and is a modular

(resp. distributive) sublattice. Both the lattice of all closed sub-

spaces of a locally convex space and the lattice of projections of a

locally finite von Neumann algebra are locally modular. The lattice

of all /^-topologies of an infinite set is locally distributive.

Introduction. In this paper, a lattice L is called locally modular

(resp. locally distributive) when L has a congruence relation 8 such that

each equivalence class by 8 which contains sufficiently many elements is

a modular (resp. distributive) sublattice. Any locally distributive lattice

is locally modular evidently, and it is shown in §1 that any locally modular

lattice is both upper and lower semimodular in the sense of Birkhoff [2].

Moreover in this section it is proved that both the lattice of all closed sub-

spaces of a locally convex space and the lattice of all projections of a

locally finite von Neumann algebra are locally modular.

It was proved by Larson and Thron [5] that the lattice of all ^-topol-

ogies on an infinite set is both upper and lower semimodular. Generalizing

this result, it is shown in §2 that the lattice of all 7\-topologies is locally

distributive. Moreover, the final theorem of [5] is formulated as a theorem

on locally distributive lattices.

In the last section, we determine the form of standard elements in the

dual of the lattice of T^-topologies. This result shows us that this lattice

has infinitely many standard elements but has no neutral elements except

Oand 1.

1. Locally modular lattices. An equivalence relation 8 in a lattice

L is called a congruence relation when it satisfies the following condition:

If ax = b¡ i8) and a2 = b2 (Ö)

then ax v a2 = bx v b2 id) and ax A a2 = bx A b2 id).
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Then, for any a g L, the equivalence class [a] = {x e L; x=a (8)} is a

sublattice of L. Moreover, if x,ye[a] and x<y then the interval

L[x,y] = {z e L; xSzSy} is contained in [a] (see [2, p. 27]).

In a lattice, we write a<-b when b covers a.

Definition. A lattice L is called locally modular when there exists a

congruence relation 8 in L satisfying the following three conditions:

(8X) If a# 1 in L then there exists b e L such that b>a and b=a (8),

and if a¿¿0 then there exists b e L such that ¿»<a and b=a (8).

(82)lfa<-b then a=b id).

(8}[) For any a e L, the sublattice [a] is modular.

L is called locally distributive when, in the above definition, (8M) is

replaced by the following condition:

(8D) For any a e L, the sublattice [a] is distributive.

Evidently, any locally distributive lattice is locally modular. The two

conditions (8X) and (82) assert that each sublattice [a] contains sufficiently

many elements.

Theorem 1.1. Any locally modular lattice L is both upper and lower

semimodular in the sense of Birkhoff [2].

Proof. Let aAb<-a and ahb<-b in L. Then we have a = b (8) by (82),

and hence (a,b)M* and (b,a)M* by (8xf) (see (1.7) of [6]). Hence we

have b<-avb and a<-avb by (7.5.4) of [6]. Thus Lis upper semimodular.

Similarly we can prove that L is lower semimodular.

A lattice L with 0 and 1 is called a DAC-lattice when both L and its

dual L* are atomistic lattices with the covering property (see [6, §27]).

We shall prove that any DAC-lattice is locally modular. We write ¡F(L)

for the set of all finite elements and write Q(L) for the set of all atoms of

L.

Lemma  1.1.    Let a and b be elements of a DAC-lattice L.

(i) There exists u e¿F(L) such that ayu=b if and only if there exists

u* 6 F(L*) such that br\u*=a.

(ii) There exists u e F(L) such that ayu = byu if and only if there exists

u* e^(L*) such that aAu* = bAu*.

Proof,    (i) If ayu=b with ue^(L), then by the covering property there

existsaconnectedchaina=x0<-x1<-<-x„ = è. Since ¿is dual-atomistic,

there exist dual atoms h¿ (i=\, • • ■ ,n) such that h^x^x and //,^x¿.

Putting u*=hxA- ■ -Ahn, we have u* e F(L*) and bhu*=a. The converse

statement can be proved similarly. Moreover, it is easily seen that the

statement (ii) follows from (i).

Theorem 1.2. Let L be a DAC-lattice. L is locally modular if we define

a = b (8) by avu=bvu for some u e F(L).
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Proof. It is evident that 8 is an equivalence relation. 8 is a congruence

relation by Lemma 1.1 (ii), and it satisfies (8X) since L is atomistic and

dual-atomistic. It satisfies (82) evidently. When a=b (8), there exists

u* eF(L*) with aAu*=bAu* = c. It follows from Lemma 1.1 that there

exist u,v e!F(L) such that cyu=a, cvv = b. Since L is finite-modular

by (27.6) of [6], we have (a, b)M* by (27.12) of [6]. Hence, 8 satisfies

By (31.10) of [6], this theorem implies the following result.

Corollary. The lattice of all closed subspaces of a locally convex

space is locally modular.

Next, let L be a relatively complemented lattice with 0 and 1. The

following condition is considered in §35 of [6] :

(J) L has a join-dense //-ideal J whose elements are all modular.

It follows from (35.6) of [6] that L* also satisfies (J) by using J* =

{x e L; x has a complement x eJ} instead of J. An important example

of such a lattice is a locally finite dimension lattice defined in (35.15) of

[6].

Lemma 1.2. Let a and b be elements of a relatively complemented

lattice L, with 0 and 1, satisfying (J).

(i) There exists u eJ such that ayu=b if and only if there exists u* s J*

such that bAu*=a.

(ii) There exists ueJ such that ayu=byu if and only if there exists

u* eJ* such that aAu*=bAu*.

Proof. If avu=b with ueJ, then taking a complement u* of b in

the interval L[a, 1], we have bAu* = a and uyu* = uyayu*=byu* = l.

Hence, u* eJ* by the statement (1) in the proof of (35.6) of [6]. The

converse statement can be proved similarly. The statement (ii) follows from

(i).

Theorem 1.3. Let L be a relatively complemented lattice, with 0 and 1,

satisfying (J). L is locally modular if we define a=b (8) by ayu=byu for

some u eJ.

Proof. It follows from Lemma 1.2 that 8 is a congruence relation.

8 satisfies (8X) since / (resp. J*) is join-dense in L (resp. L*). It satisfies

(02) evidently. When a=b (8), we can prove (a, b)M* by the same way

as in the proof of Theorem 1.2, using (35.10) of [6] instead of (27.12).

Corollary. Any locally finite dimension lattice is locally modular.

Especially, the lattice of all projections of a locally finite AW*-algebra is

locally modular (see (37.16) of [6]).
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2. Locally distributive lattices.

Lemma 2.1. Let L be an atomistic lattice. A congruence relation 8 in L

satisfies the condition (8D) if it satisfies the following condition:

(QD) Ifa = b (8) in L and if p is an atom of L such that pSayb then either

pSa or pSb.

Proof. For x, y, z e [a], we have (xVy)Az=(xAz)v(yAz), since if p is

an atom with pS(xvy)Az then pS(xAz)v(yAz) by (QD). Similarly,

(xAy)Vz=(xVz)A(yvz) holds.

Lemma 2.2. Let L be a locally distributive atomistic lattice whose

congruence relation 6 satisfies (0.D). If x<-a, y<-a in L and if there exists

an atom p of L such that a=xyp=yyp then x=y.

Proof. Evidently pS_x and pS_y. Since x = a=y (8) by (82), we have

p^xvy by (QD), and hence xvy<a. Since x<-a we have x=xvy, and

similarly y=xvy.

Theorem 2.1. Let L be a complete locally distributive atomistic

lattice whose congruence relation 8 satisfies (£lD). For any a e L, we put

F(a) = {x e L; x<-a}. If we put a(M) = f\ (x; x e M) for every subset M

of Y(a) (a(0)=a), then the set {a(M); Ma T(a)} is a complete sublattice

of L which is dual isomorphic to the Boolean lattice formed by all subsets

of Via).

Proof. Let {A/a;ae/} be an arbitrary family of subsets of Via).

The equation a({Jx MX) = A<X a(Mx) holds evidently and we shall prove

a((\x Ma) = Va a(Mx) (we denote by u and n the union and the inter-

section respectively). It suffices to show that if p is an atom with p Sa and

pS. Va a(Ma) then /»^o(Pla Ma). For every a, there exists xa e Mx with

pSxoi> s'nce pS.a(Mf). Then, since xavp = a, it follows from Lemma 2.2

that xx=xß for every a, ß el. Hence,//^a(f)a MJ. Therefore, {a(M); M<=

T(a)} is a complete sublattice of L. Moreover, it is easy to prove by Lemma

2.2 that the mapping M^-a(M) is one-to-one. This completes the proof.

Next, we shall give an example of a locally distributive lattice whose

congruence relation satisfies (D.D). Let X be an infinite set. A topology

on X is denoted by the collection ¡F of all open sets. fF is a rrtopology

if and only if IF contains all cofinite subsets of X. The set LT(X) of all

^-topologies on X forms a complete lattice, ordered by set inclusion,

that is, 3~x<lF2 means that 3~2 is finer than IFX. The greatest element of

LT(X) is the discrete topology and the least element is the cofinite top-

ology (see [7, §1]).

For any subset y of X, we denote by iF(Y) the collection of all subsets of

Y. It was shown in [3] and [7] that a dual-atom of LT(X), which is called



19741 LOCALLY  MODULAR   AND  DISTRIBUTIVE   LATTICES 241

a nonprincipal ultratopology, has the form

Mix, <%) = SP(X - {x}) u *

where x e X and °U is a nonprincipal ultrafilter on X, and it follows from

Theorem 1.1 of [7] that LTiX) is dual-atomistic. We remark that LTiX)

is not atomistic.

Theorem 2.2. Let Xbe an infinite set. The lattice LT(X) of Tx-topologies

on X is locally distributive if we define 3~X=F2 (8) by FxC\0'(X—F) =

F2C\^>(X—F)for some finite subset F of X (i.e. F~x coincides with ¡F2

on some cofinite subset). Moreover, this congruence relation 8 satisfies

(£iD) in the dual of LT(X).

Proof. It is easy to verify that 8 is a congruence relation. Let

F e LT(X). If IF is not discrete, then there exists x e A'such that {x} £ &~,

Putting 9~x=3~\j{G\j{x};Ge.F}, we have F<FX e LT(X) and

!FX=¡F (8). If ¡F is not the cofinite topology, then there exists a dual-

atom $~ix, <%) such that 3~ix, <%)7£F. Putting y%**&h$~ix, <%), we

have 3~2<F and ^"2=^" (0). Hence, 8 satisfies iOx). If FX<-3T2, then

there exists a dual-atom $~ix, <%) such that Fx=F2A^ix, °U). Hence,

ô satisfies (02).

Next, we shall show that 0 satisfies ifljf) in the dual of LT(X), that

is, if FxC\0>(X-F)=F2C\0)(X-F) and F(x,%)^FxaF2 then

.r(je,«r)^', or JT2. If we had Fix, °U)^F i for /=1,2, then there

would exist Gie3Ti such that G^STtx, <%). Since G, <£ ̂(X-{x}) U^,

we have x e C7¿ <£ ̂C, and then GiUG;, £ ^ since ^ is an ultrafilter. We put

G - (G, U Cj) n {Gx U (X - F)} n {G2 u iX - F)}.

Since G2-Fe3~2C\3PiX-F)^Fx, we have (G1uG2)n{G1U(A'-.F)}

= GxKJiG2—F)eFx. Moreover, G2\J(X—F)eFx since it is a cofinite

subset. Hence, we have G e ^"1; and similarly G e <^~2. On the other hand,

since xeG and G<= Gx UG2 £ %', we have G <£ ̂(x, ^T). This contradicts

that y(x, %)^FxA^r2.

In the dual of LTiX), since 0 is a congruence relation satisfying (QD),

8 satisfies (8D) by Lemma 2.1. Hence, 0 satisfies (0^) in LT(X) also.

Therefore LT(X) is locally distributive.

Remark. It follows from Theorem 1.1 that the above theorem is a

generalization of [5, Theorems 3 and 4]. Moreover, Lemma 2.2 and

Theorem 2.1 are lattice theoretical generalizations of [5, Lemma 9 and

Theorem 5 (respectively)].

3. Standard elements in the dual of the lattice of ^-topologies. Following

[4], an element a of a lattice L is called standard when

x A (a V y) = (x A a) V (x a y)   for all x, y e L,
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and a is called distributive when

a V (x A y) = (a V x) A (a V y)   for all x, y e L.

It follows from Theorems 1 and 3 of [4] that any standard element is

distributive and that all standard elements form a sublattice of L.

Lemma 3.1.    Let a be an element of an atomistic lattice L. The following

three statements are equivalent.

(a) a is standard,

(ß) a is distributive.

(y) If P ,s an Mom of L such that pSayx andpS_x then pSa.

Proof. It is easy to verify the implications (/?)=>(}»)=>(a), and the

details are omitted.

Let X be an infinite set. We denote by ^(X) the collection of all cofinite

subsets of X. For any subset A of Jf, it is evident that &'(A)= 0>iA) Kj^iX)

is a 7Vtopology. Especially, Sf{X) is the discrete topology, Sfi<Z) is

the cofinite topology and S^({x}) is an atom of LT(X) for any x e X.

The set {¡/'(A); A^X} forms a Boolean sublattice of LT(X), which

coincides with the lattice A0 appeared in [1].

Theorem 3.1. Let F0 be an element of the lattice LT(X) of ^-topol-

ogies on an infinite set X, and let Fo^Sf(0). The following three state-

ments are equivalent.

(a.) ¿F0 is standard in the dual of LT(X).

(ß) ¿F0 is distributive in the dual of LT(X).

(y) F0=^(X-F)for some finite subset F of X.

Proof. Since LT(X) is dual-atomistic, it follows from Lemma 3.1

that each of (a) and (ß) is equivalent to the following statement:

(Ô) lfZT(x, <%)=F0aF and F(x, °U)^2T then M(x, <%)^0.
First, we shall prove that (y) implies (<5). Let Fix, aU)^SfiX-F)A3T.

If 9~ix, &)}£&-, then there exists G&3T with G^fx, <T), whence

xeG£*. Since G-F &&'iX-F)C\9~cz$'ix, °U) and G-Ftfoft, we

have G-FcX-{x}, whence x e F. Hence, ^(X-F)SF(x, W). There-

fore, M0=^(X-F) satisfies (Ô).

Next, we assume that F0 satisfies (Ô), and we put F={x e X; {x} <£ &~0}.

We shall prove that F0=^(X-F). Since {x} e F0 for every x 6 X-F,

we have 0>iX-F)c:M0, whence ^iX-F)S3T0. lfíf(X-F)<Fü, then

there would exist CeJ, such that G <£ S^iX—F). Then we have GnF^ 0.

We take x e GnFand put F=Sf({x}). Since G £ íf(JT), the set A = X-G

is infinite. Hence, there exists a nonprincipal ultrafilter °li on X such

that AKj{x}e^. Since {x}$F0, we have FoA3r=^(0)S£r(x, <%).

Moreover, ^S.F(x, ^¿) since {x}eF. On the other hand, we have
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(A u {x})nG = {x} ̂  <% since °U is nonprincipal. Since Ayj{x}e°U, we

have G <£ *. Hence, G i F(x, °U), and therefore 3TQ£3T(x, W). This

contradicts our assumption. Thus we get 3'{j=Sf(X— F).

We shall prove that Fis finite. Since 3~^¿^(0), there exists x e X—F.

If F were infinite, then there would exist a subset A of F such that both A

and X-,4 are infinite. Put F=Sf(0)\J{G n(A\j{x});Ge(ê(X)}. It is

evident that F e LT(X). Since X— (yl u{x}) is infinite, there exists a

nonprincipal ultrafilter °tl which contains this set. We have F\S.F(x, °l/)

since {x}e^~0. Since /lu{f}^, we have /I u{x} $?F(x, W). Hence,

<r^^(x, <f). If Geli(X), then Gn(/1 u{x})nF=>Gn^5^0, since A is

infinite. Hence, Gn^uíxDdzJf-F, whence Gr\(A\j{x})$&'(X-F) =

■F0. Therefore, FoaF=&'(0)SJ~(x, aU). This contradicts our assump-

tion. Thus, it has been proved that (ô) implies (y). This completes the

proof.

It is shown in [2, Chapter III, §9] that an element of a lattice L is

neutral if and only if it is standard in both L and its dual and that if a

neutral element has a complement then it is also neutral. Hence, it follows

from the above theorem that

Corollary. The lattice LT(X) has no neutral element except the great-

est element £f(X) and the least element Sf(0).

Finally, we remark that the congruence relation ,FX=F2 (8) in LT(X)

defined in Theorem 2.2 coincides with the relation defined by each of the

following equations:

&~x A £f(X - F) = ,F2A Sf(X - F),   3~x V if(F) =F2\ Sf(F).

References

1. R. W. Bagley, On the characterization of the lattice of topologies, J. London

Math. Soc. 30 (1955), 247-249. MR 16, 788.
2. G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25,

Amer. Math. Soc, Providence, R.I., 1967. MR 37 #2638.
3. O. Fröhlich, Das Halbordnungssystem der topologischen Räume auf einer Menge,

Math. Ann. 156 (1964), 79-95. MR 29 #4023.
4. G. Grätzer and E. T. Schmidt, Standard ideals in lattices, Acta Math. Acad.

Sei. Hungar. 12 (1961), 17-86. MR 24 #A3099.
5. R. E. Larson and W. J. Thron, Covering relations in the lattice of ^-topologies,

Trans. Amer. Math. Soc. 168 (1972), 101-111. MR 45 #5942.

6. F. Maeda and S. Maeda, Theory of symmetric lattices, Die Grundlehren der math.

Wissenschaften, Band 173, Springer-Verlag, New York and Berlin, 1970. MR 44 #123.

7. A. K. Steiner, The lattice of topologies: structure and complementation, Trans.

Amer. Math. Soc. 122 (1966), 379-398. MR 32 #8303.

Department of Mathematics, Ehime University, Bunkyo-Cho, Matsuyama-Shi,

Japan


