THE EXCESS OF SETS OF COMPLEX EXPONENTIALS

DAVID R. PETERSON

ABSTRACT. Let $\Lambda = \{\lambda_n\}$ be a complex sequence and denote its associated set of complex exponentials $\{\exp(i\lambda_n x)\}$ by $e(\Lambda)$. Redheffer and Alexander have shown that if $\sum |\lambda_n - \mu_n| < \infty$ then $e(\Lambda)$ and $e(\mu)$ have the same excess over their common completeness interval. This paper shows this result to be the best possible.

1. Introduction. Let $\Lambda = \{\lambda_n\}$ be a complex sequence and denote its associated set of complex exponentials $\{\exp(i\lambda_n x)\}$ by $e(\Lambda)$. The properties of $e(\Lambda)$ can often be predicted from analyzing the distribution of Λ , for instance, its completeness interval [2], [6], convergence rates [7], and norm inequalities [4], [5], [8]. In this paper, a condition derived by Redheffer and Alexander [1] which is sufficient for preserving the excess of a set is shown to be the best possible.

Let $\Lambda = \{\lambda_n\}$ be a complex sequence; $e(\Lambda)$ is complete in $L^2(-a, a)$ if the following condition is satisfied: if $f \in L^2(-a, a)$ and

$$\int_{-a}^{a} f(x) \exp(i\lambda_n x) \, dx = 0$$

for each *n*, then $f \equiv 0$. The interval *I* is the completeness interval for $e(\Lambda)$ if the set is complete on all shorter intervals but on no longer intervals. $e(\Lambda)$ has excess $E(\Lambda)$ on an interval if it remains complete when *E* terms are removed but not when E+1 terms are removed. The range of *E* may include negative integers as well as $\pm \infty$ by analogous definitions. The term excess is well defined provided Λ satisfies, $n \neq m$ implies $\lambda_n \neq \lambda_m$, and this condition is implicit throughout. We have $E=+\infty$ on intervals shorter than *I* and $E=-\infty$ on intervals longer than *I* and so $E(\Lambda)$ will always refer to *I*, the only interval of interest. With complete generality set $I=[-\pi, \pi]$.

A sequence Λ is canonically indexed if $0 \leq n < m$ implies that $|\lambda_n| \leq |\lambda_m|$ and $|\lambda_{-n}| \leq |\lambda_{-m}|$ and is regular if $\inf_{n \neq m} \{|\lambda_n - \lambda_m|\} > 0$.

2. Statement of results. Let w(n) be a positive weight function defined on the integers and Λ and $U = \{\mu_n\}$ be complex sequences.

Received by the editors May 8, 1973.

AMS (MOS) subject classifications (1970). Primary 42A64.

Key words and phrases. Completeness, excess.

[©] American Mathematical Society 1974

THEOREM I (REDHEFFER-ALEXANDER [1]). If $w(n) \ge \delta > 0$, for all n, then $\sum |\lambda_n - \mu_n| w(n) < \infty$ implies $E(\Lambda) = E(U)$.

THEOREM II. If $\inf\{w(n)\}=0$, then there exist real, regular, sequences Λ and U such that $\sum |\lambda_n - \mu_n| w(n) < \infty$, when Λ is canonically indexed, but $-\infty < E(\Lambda) < E(U) < \infty$. Theorems I and II characterize the weight functions w(n) with the property: $\sum |\lambda_n - \mu_n| w(n) < \infty$ implies $E(\Lambda) = E(U)$, as those which satisfy $\inf\{w(n)\} > 0$.

Theorem II remains valid when w(n) is allowed to take on the value $+\infty$, provided $0 \cdot \infty = 0$, and thus no gap theorem can remove the restriction $\inf\{w(n)\}>0$.

3. **Proof of Theorem II.** We may suppose that $\inf_{n>0}\{w(n)\}=0$ and let n_j be the first integer for which $w(n) \leq j^{-3}$, $j=1, 2, \cdots$. Define a sequence of positive integers $\{k_j\}$ by: $k_0 =$ arbitrary, large integer and for $j=1, 2, \cdots, k_j = \inf\{n|n=n_{j+m} \text{ for some } m \geq 0 \text{ and } n \geq k_{j-1}^2\}$. Theorem II follows from Lemma 3 and Lemma 4. The direct product definition $F(z) = \prod (1-z/\lambda_n)$ will be used to designate $F(z) = \lim_{R\to\infty} \prod_{|\lambda_n| < R} (1-z/\lambda_n)$ with convergence easily verified if there is no justification given.

LEMMA 3. There is a real, even, regular sequence Λ satisfying $\{\pm k_j, j \neq 0\} \subset \Lambda$, $0 \notin \Lambda$, and $-\infty < E(\Lambda) < 0$, such that if $Q(z) = \prod (1-z/\lambda_n)$ then Q is of exponential type π , $Q(x) \in L^2(-\infty, \infty)$, and

$$\sum j^2 \int_{k_{j+1}}^{k_{j+2}} |Q(x)|^2 \, dx = \infty.$$

LEMMA 4 (REDHEFFER-ALEXANDER [1]). Let Λ and U be real sequences with $0 \notin \Lambda$, U and $n_{\lambda}(r)$ $(n_{\mu}(r))$ denote the number of terms λ_n (resp. μ_n) in the interval (0, r), counted negatively for negative r, and set $\Delta r = n_{\lambda}(r) - n_{\mu}(r)$. If $|\Delta r| \leq H$ eventually, then $|E(\Lambda) - E(U)| \leq 4H + 2$.

Suppose Λ and Q(z) are as in Lemma 3 and define the sequence U by:

$$\mu_n = \lambda_n \qquad \text{if } \lambda_n \neq k_j, \\ = k_k - l_j \quad \text{if } \lambda_n = k_j \text{ for some } j,$$

where l_j is selected so that $|l_j - j| \leq 1$ and the sequence U remains regular. Lemma 4 holds with H=1 so that $|E(\Lambda) - E(U)| \leq 6$ and since $w(n_{j+m}) \leq j^{-3}$, we have $\sum |\lambda_n - \mu_n| w(n) \leq \sum (j+1)j^{-3} < \infty$.

Set $P(z) = \prod (1-z/\mu_n)$ and R(z) = P(z)/Q(z) so that

$$R(z) = \prod (1 - l_j z / (k_j - z) (k_j - l_j)).$$

For a fixed z, let k_m denote one of the closest k_i to z and set

(1)
$$f(z) = |z| \sum_{j \neq m} l_j / |k_j - z| (k_j - l_j).$$

322

If $|\arg z| \ge \eta > 0$, then $|k_j - z| \ge |z| \sin \eta$, and since $k_j \ge k_{j-1}^2$ for all j, for $|\arg z| < \eta$ there is a constant A not depending on z so that $A|k_j - z| \ge |z|$ for $j \ne m$. From the convergence of $\sum l_j |k_j - l_j|_{-1}$, it follows that the series in (1) converges uniformly and that f(z) is uniformly bounded in the complex plane. Thus there is a constant A' so that

$$A' \leq |R(z)| |k_m - z|/|k_m - l_m - z| \leq A'^{-1}.$$

Hence, P(z) has exponential type π and

$$\begin{split} \int |P(x)|^2 \, dx &\geq A' \sum \int_{k_j+1}^{k_j+2} \left(Q(x) \frac{(k_j - l_j - x)}{(k_j - x)} \right)^2 \, dx \\ &\geq A' \sum \left(\frac{j}{2} \right)^2 \int_{k_j+1}^{k_j+2} |Q(x)|^2 \, dx = \infty. \end{split}$$

It must be that $E(U) \ge 0$, for if $-\infty < E(U) < 0$, then by the Paley-Wiener theorem, there would be an entire function F(z) of exponential type π which satisfies $F(x) \in L^2(-\infty, \infty)$ and whose zero set is $U \cup \{z_j\}, j=1, 2, \cdots,$ -E(U)-1, for some nonzero complex numbers z_j . By a theorem of Lindelöf, $F(z) = a \exp(bz)P(z)\pi(1-z/z_j)$ for constants a and b. An examination of the indicator functions for F and P shows that b=0 and thus $F(x) \notin L^2(-\infty, \infty)$, a contradiction.

4. **Proof of Lemma 3.** The sequence Λ is constructed from the integers so that Q(z) behaves like $\sin \pi z/\pi z$ except in neighborhoods of the set $\{\pm k_j\}, j=1, 2, \cdots$, where |Q(x)| assumes relatively large values.

Let $\{l_j\}$ be a sequence of positive integers satisfying $l_j \leq k_j^{\alpha}$ for some α , $0 < \alpha < 1$, and *m* be a fixed positive integer, all to be specified later. For n > 0, set

$$\begin{split} \lambda_n &= n - m, \qquad k_j - l_j \leq n < k_j, \\ &= n - m + \frac{1}{2}, \qquad k_j - l_j - m \leq n < k_j - l_j, \\ &= n, \quad \text{otherwise,} \end{split}$$

and for n < 0, set $\lambda_n = -\lambda_{-n}$. The sequence Λ is real, regular, and even with $0 \notin \Lambda$ and $\{\pm k_j\} \subset \Lambda$. For $U = \{n\}$, $n \neq 0$, Lemma 4 holds with m = H so that $E(\Lambda)$ is finite. For $j = 1, 2, \cdots$, define a sequence of functions $r_{+i}(z)$ by

(2)
$$r_{\pm j}(z) = \prod_{s=k_j-m}^{k_j-1} \left(\frac{1 \pm z(l_j - \frac{1}{2})}{\lambda_{s-l_s}(s-z)} \right).$$

For $Q(z) = \pi(1-z/\lambda_n)$, we then have

(3)
$$\pi z Q(z) = \sin \pi z \left(\lim_{J \to \infty} \prod_{j < J} r_j(z) \right).$$

The influence of the term $r_j(z)$ is only local since there is a constant A so that uniformly in z and j>0, we obtain $|\ln|r_j(z)| |\leq Al_j/k_j$ whenever $|z-k_j|\geq k_j/2$. We can assume that $k_j\geq 2^j$ and obtain

(4)
$$\left|\ln\prod'|r_j(z)|\right| \leq 2A \sum 2^{(\alpha-1)j}, \quad \alpha-1 < 0,$$

where the ' denotes deletion of those terms for which $|z-k_j| < k_j/2$. From (4) it is clear that Q(z) has exponential type π .

For any real x satisfying $|x-k_j| \leq k_j/2$, the absolute value of each term in (2), $s=k_j-m, \dots, k_j-1$, is dominated by $\max\{2, 3xl_j/\lambda_{s-l_j}|s-x|\}$. This bound and the inequality $|\sin \pi x| \leq \pi |s-x|$ applied to (2), (3) and (4) show that there is a constant B independent of j so that

(5)
$$\int_{|x-k_j| \leq 2m} |Q(x)|^2 dx \leq Bm l_j^{2m} / k_j^2,$$

and

(6)
$$\int_{2m \le |x-k_j| \le k_j \ge 2} |Q(x)|^2 dx \le B \int_{|x-k_j| \le k_j/2} x^{-2} dx + \frac{B l_j^{2m}}{k_j^2} \int_{|x-k_j| \le m} |x-k_j|^{-2m} dx$$

Thus, $Q(x) \in L^2(-\infty, \infty)$ if $\sum l_j^{2m}/k_j^2 < \infty$.

Similarly, $\int_{k_j+1}^{k_j-2} |Q(x)|^2 dx \ge B' l_j^{2m} / k_j^2$ uniformly in j for some nonzero B'. It is clear that by selecting m=2 and $l_j=[(k_j/j)^{1/2}]$, Lemma 3 is satisfied.

5. Remarks and extensions. Without further restrictions on w(n), the conclusion of Theorem II cannot be altered to give $|E(\Lambda) - E(U)| = \infty$. For instance, setting $w(n)=j^{-1}$ when $n=2^j=n_j$ and w(n)=1 otherwise, then $\sum |\lambda_n - \mu_n| w(n) < \infty$ implies $|E(\Lambda) - E(U)| < \infty$. The convention $|\infty - \infty| = 0$ is used when $E(\Lambda) = \pm \infty$.

To see this, suppose that $E(\Lambda) < 0$ so that there is a nontrivial F(z) of exponential type π , $F(x) \in L^2(-\infty, \infty)$, whose zero set contains Λ . Without altering the conclusion $|E(\Lambda) - E(U)| < \infty$ we may assume $\lambda_n = \mu_n$ when $n \neq n_j$, $|\mu_{n_j} - \lambda_{n_j}| \leq j$, and $|I_m \mu_n|, |I_m \lambda_n| \geq 1$, for all *n* (see Elsner [3]). Let

$$Q(z) = F(z) \prod_{j} \frac{(1-z/\mu_{nj})}{(1-z/\lambda_{nj})}$$

and suppose that λ_{n_m} is one of the closest λ_{n_j} to z. By the estimates in the proof of Theorem II,

$$A \leq |F(z)| |\mu_{n_m} - z|/|Q(z)| |\lambda_{n_m} - z| \leq A^{-1}$$

for a constant A. Therefore, Q has exponential type π and $Q(x)/(1+|x|) \in L^2(-\infty, \infty)$ so that $E(U) < \infty$. By symmetry, $|E(\Lambda) - E(U)| < \infty$.

If we consider only real sequences Λ and U, Theorem I and Theorem II can be restated in terms of the function $n_{\lambda}(r)$. We need only observe that for canonically indexed sequences Λ and U, if for some m, $\int |n_{\mu}(r) - n_{\mu}(r) + m| dr < \infty$, then $\sum |\lambda_n - \mu_{n+m}| < \infty$.

THEOREM I'. Let w(x) be a positive weight function for which $\inf_{x}\{w(x)\}>0$. For Λ and U are real sequences and for some m, $\int |n_{\lambda}(r)-n_{\mu}(r)+m|w(r) dr < \infty$, then $E(\Lambda)=E(U)$.

THEOREM II'. If $\lim_{x\to\infty} w(x)=0$, then there are real, regular sequences Λ and U such that $\int |n_{\lambda}(r)-n_{\mu}(r)|w(r) dr < \infty$ but $-\infty < E(\Lambda) < E(U) < \infty$.

References

1. W. O. Alexander and R. Redheffer, *The excess of sets of complex exponentials*, Duke Math. J. **34** (1967), 59-72. MR **34** #6432.

2. A. Beurling and P. Malliavin, On the closure of characters and the zeros of entire functions, Acta Math. 118 (1967), 79–93. MR 35 #654.

3. J. Elsner, Zulässige Abänderungen von Exponential-systemen im $L^p(-A, A)$, Math. Z. **120** (1971), 211–220.

4. M. I. Kadec, *The exact value of the Paley-Wiener constant*, Dokl. Akad. Nauk SSSR **155** (1964), 1253–1254=Soviet Math. Dokl. **5** (1964), 559–561. MR **28** #5289.

5. A. E. Ingham, Some trigonometrical inequalities with applications to the theory of series, Math. Z. 41 (1936), 367–379.

6. J. Kahane, *Travaux de Beurling et Malliavin*, Séminaire Bourbaki, 1961/1962, fasc. 1, Exposé 225, 2ième éd., Secrétariat mathématique, Paris, 1962. MR **26** #3561; errata, 30, 1203.

7. N. Levinson, *Gap and density theorems*, Amer. Math. Soc. Colloq. Publ., vol. 26, Amer. Math. Soc., Providence, R.I., 1940. MR 2, 180.

8. R. E. A. C. Paley and N. Wiener, *Fourier transforms in the complex domain*, Amer. Math. Soc. Colloq. Publ., vol. 19, Amer. Math. Soc., Providence, R.I., 1934.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TENNESSEE, KNOXVILLE, TENNESSEE 37916