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A  NOTE  ON THE SUM  OF TWO  CLOSED
LATTICE  IDEALS*

HEINRICH   P.   LOTZ1

Abstract. Suppose that E is a locally convex lattice. The main

results established in this note are: (a) If /, J are cr(£", £)-closed

lattice ideals in the dual £" of E, then /+/ is o(E', £)-closed. (b) If

E is a Fréchet lattice (in particular, if £ is a Banach lattice) and if

/, J are closed lattice ideals in E, then /+/ is closed.

It is known that the sum of two closed lattice ideals in a Banach lattice

is a closed lattice ideal (see Theorem 5.3 in [1] and Theorem 1.1 in [2]).

In this note, we deal with the sum of two closed lattice ideals in a locally

convex lattice and with the sum of the polars of two lattice ideals, that is,

with the sum of two weak*-closed lattice ideals in the dual space.

A linear subspace 7 of a vector lattice F is a lattice ideal if 7 is solid,

that is, if x £ I and \y| S \x\ imply y £ I. The sum of two lattice ideals in a

vector lattice is a lattice ideal. A closed linear subspace 7 of a locally con-

vex vector lattice E is an ideal if and only if the polar 1° of 7 is a lattice ideal

in the dual E' of E.

We refer the reader to [3] for further background information on

locally convex vector lattices.

Theorem 1. If E is a locally convex vector lattice and if I and J are

lattice ideals in E, then iIr\J)°=I°+J0.

Proof. It is clear that (Ir\f)°^I°+J°. To prove the reverse inclusion,

it would suffice to show that if 0Sf£ (lnj)°, thenfe I°+J° since 7°+/°

is a lattice ideal in E'. For x^O in E, define

yix) = sup{fiy):y£[0,x]rM}.
■-
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Then y is additive and positively homogeneous on the positive cone in E;

consequently, y can be extended to a linear functional g on E (cf. proofs

of V, 1.4 and V, 1.6 in [3]). Since OSgSf it follows that g £ E'. Moreover,

f—g£l° and g£J° since [0, x]n7<=7n/ for each x£j. Therefore,

f=if—g)+g £ I°+J° which completes the proof.
Remark. The linear functional g constructed in the above proof is

just the component of/in I0± when E' is written as the order direct sum of

the bands 7° and (T)-1.

Corollary. If E is a locally convex vector lattice, then the sum of two

c(F', E)-closed lattice ideals in E' is oiE', E)-closed.2

Proof. If 7 and / are o-(F', F)-closed lattice ideals in £", then the

<r(£', £)-closure of 7+/is (7°nJ0)°; consequently, the conclusion follows

immediately from Theorem 1.

Theorem 2. Suppose that I and J are lattice ideals in a locally convex

vector lattice E. Then the mapping (x, y)^-x+y is a weak homomorphism

from 7x7 into E.

Proof. It would suffice to show that the mapping/~—>-(/]7, f\j) (where

f\j denotes the restriction of / to 7) from E into 7'x/' has a

o,(7'xF',7x/)-closed range [3, IV 7.3]. This range is clearly contained in

the o-(7'x/',7x/)-closed subspace G = {ig, h):g £ F, h £j',g(x)=h(x)for

all x 6 Inj} of 7' xJ'. If (g, h) e G, then there exist g, « in £" such that

g\i~S' n\j—h (by the Hahn-Banach theorem). Since g—h £ (7nJ)° and

since (Ir\J)°=r+J° by Theorem 1, it follows that g—h=fx+f2 where

fo £l°,f2 £J°. But then ig, h) is the image of f=g—fx=fi+f2 under the
mapping /—►(/!/> f\j), that is, the range of this mapping is the

oil'xJ', 7x7)-closed subspace G.
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2 This Corollary was proved independently by S. Kaplan.


