ON A THEOREM OF A. PEŁCZYŃSKI

JOHN L. B. GAMLEN¹

ABSTRACT. If Y is a weakly complete Banach space, and X is a Banach space with separable dual, then every continuous linear operator from $C_X(K)$ to Y must be weakly compact. Here $C_X(K)$ denotes the space of continuous functions on the compact Hausdorff space K, having values in X.

In 1953, A. Grothendieck [5] proved that if Y is a weakly complete Banach space, then every continuous linear map from C(K) to Y must be weakly compact. (Here K is an arbitrary compact Hausdorff space.) Later A. Pełczyński [7] weakened the assumption on Y, to the requirement that c_0 is not isomorphic to any subspace of Y. In 1962, Pełczyński [8, p. 645] obtained a result which implies that C(K) may be replaced in the above by $C_X(K)$, the space of continuous X-valued functions on K, where X is a reflexive Banach space. (See also J. Batt and E. J. Berg [2, p. 237], where a different but related proof is given.) Necessary and sufficient conditions on X for this to still work are not known. However, in order for every continuous linear map $T: C_X(K) \to Y$ to be weakly compact for a given Y, it is obviously necessary that every continuous operator from X to Y be weakly compact. But if X has a separable dual space, this holds for weakly complete Y, since Cantor's diagonal argument allows us to extract from every bounded sequence in X a subsequence which is weakly Cauchy. This suggests our result below.

Theorem. If Y is a weakly complete Banach space, and X is a Banach space whose separable subspaces have separable duals, then every continuous linear operator from $C_X(K)$ to Y must be weakly compact.

This does not quite include the result of Pełczyński because of our slightly stronger assumption that Y is weakly complete. The interesting thing is that in the above theorem we cannot replace weak completeness of Y by the assumption that Y has no subspace isomorphic to c_0 . The counterexample is the well-known space J of R. C. James [6], which has

Received by the editors March 26, 1973 and, in revised form, August 13, 1973.

AMS (MOS) subject classifications (1970). Primary 46E40; Secondary 46G10, 28A45, 46B15.

Key words and phrases. Weakly compact operators.

¹ The author is partially supported by NRC Grant A7552.

[©] American Mathematical Society 1974

separable bidual, but is not reflexive. (The identity map on J fails to be weakly compact, even though J contains no copy of c_0 .)

Batt and Berg's proof of Pełczyński's result proceeds via weak compactness of the adjoint map. This involves a weak compactness theorem in the space of X'-valued measures, which will not work in our case, as it depends on reflexivity of X. However this approach was used in [1] to prove weak compactness of a map from a C^* -algebra to a Banach space containing no copy of c_0 . (The details are, needless to say, quite different.)

PROOF OF THE THEOREM. We first deal with the case that K and X (hence also X') are separable. By the representation theorem of [2, pp. 225-228], we may represent our map $T: C_X(K) \rightarrow Y$ as an integral with respect to a measure μ taking values in the space [X, Y] of bounded operators between X, Y, and having semivariation absolutely continuous with respect to some positive regular measure λ on K. Thus the adjoint T' maps Y' into a space of measures with values in X', all of which are absolutely continuous with respect to λ . For such measures the Radon-Nikodym theorem is well known to hold, so we may embed the range of T' in $L^1(X', \lambda)$, the space of λ -integrable, X'-valued functions, by the formula:

$$\langle f, T'y' \rangle = \langle Tf, y' \rangle = \int f d(y'\mu) = \int f(d(y'\mu)/d\lambda) d\lambda,$$

for $f \in C_X(K), y' \in Y'.$

Associated with the element $y'\mu$ in T'Y' is the function $d(y'\mu)/d\lambda$ in $L^1(X',\lambda)$, and it is easy to see that the embedding of T'Y' into L^1 is norm increasing. Since $L^1(X',\lambda)$ is separable, we conclude that T'Y' is a separable subspace of the dual of $C_X(K)$. This fact enables us to use Cantor's diagonal argument to extract a subsequence $\{f_{n_m}\}$ such that for every y' in Y' the sequence $\{\langle f_{n_m}, T'y' \rangle\} = \{\langle Tf_{n_m}, y' \rangle\}$ is Cauchy. Thus by weak completeness of Y, $\{Tf_{n_m}\}$ converges weakly in Y, proving T is weakly compact.

The reduction to the case X, K, are separable is standard; see for example [2].

REFERENCES

- 1. C. A. Akemann, P. G. Dodds, and J. L. B. Gamlen, Weak compactness in the dual space of a C*-algebra, J. Functional Analysis 10 (1972), 446-451.
- 2. J. Batt and E. J. Berg, Linear bounded transformations on the space of continuous functions, J. Functional Analysis 4 (1969), 215-239. MR 40 #1798.
- 3. C. Bessaga and A. Pełczyński, On bases and unconditional convergence of a series in a Banach space, Studia Math. 17 (1958), 151-164. MR 22 #5872.
- 4. —, A generalization of results of R. C. James concerning absolute bases in Banach spaces, Studia Math. 17 (1958), 165-174. MR 22 #5874.
- 5. A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canad. J. Math. 5 (1953), 129-173. MR 15, 438.

- 6. R. C. James, A non-reflexive space isometric with its second conjugate space, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), pp. 174-177. MR 13, 356.
- 7. A. Pelczyński, Projections in certain Banach spaces, Studia. Math. 19 (1960), 209-228. MR 23 #A3441.
- 8. ——, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641-648. MR 26 #6785.

Department of Mathematics, Yale University, New Haven, Connecticut 06520

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALBERTA, EDMONTON, ALBERTA, CANADA