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THEOREM HOLDS
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Abstract. H. Blumberg proved that, if/is a real-valued func-

tion defined on the real line R, then there is a dense subset D of R

such that/|D is continuous. J. C. Bradford and C. Goffman showed

[3] that this theorem holds for a metric space X if and only if X is a

Baire space. In the present paper, we show that Blumberg's theorem

holds for a topological space X having a rr-disjoint pseudo-base if

and only if X is a Baire space. Then we identify some classes of

topological spaces which have (/-disjoint pseudo-bases. Also, we

show that a certain class of iocally compact, Hausdorff spaces satis-

fies Blumberg's theorem. Finally, we describe two Baire spaces for

which Blumberg's theorem does not hold. One is completely

regular, Hausdorff, cocompact, strongly a-favorable, and pseudo-

complete; the other is regular and hereditarily Lindelöf.

1. In [3], J. C. Bradford and C. Goffman proved the following state-

ment.

1.1. Theorem. A metric space X is a Baire space if and only if the

following statement, called Blumberg's theorem, holds.

1.2. Iff is a real-valued function defined on X, then there is a dense subset

D of Xsuch that f\D is continuous.

It is clear from the proof of 1.1 given in [3], that any topological space

for which 1.2 holds is a Baire space. The purposes of this note are to show

that 1.2 holds for certain classes of topological Baire spaces, and to give

an example which shows that 1.2 does not hold for all completely regular,

Hausdorff, Baire spaces.

1.3. Lemma. Suppose X and Y are topological spaces and f.X-^-Y.

Suppose that for each nonempty open subset U of X, there is a subset KÍU)

of U such that f\KÍU) is continuous and K{U) is not nowhere dense. Then

there is a dense subset D of X such that f\D is continuous.

The proof of 1.3 is simple and is omitted.
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Part of the following proposition is implicit in the proof of 1.1 that is

given in [3].

1.4. Proposition. Suppose X is a topological space and m is an infinite

cardinal number. The following statements are equivalent.

(1) If iGa)^T is a family of dense open subsets of X and |r|5^m, then

f] {Ga : a e T} is dense in X.

(2) If iKx)xer is a family of nowhere dense sets and |r|^m, then

(J {Ka : a e Y} is not open.

(3) If Y is a topological space of cardinality Sm andf: X^- Y, then there

is a dense subset D of X such that f\D is continuous.

(4) IfiY,d) is a metric space of weight S m andf: X-+ Y then, for every

£>0, there is a dense subset Die) such that/|7)(e) has oscillation Se at

every point in Die).

Proof.   It is known that (1) and (2) are equivalent.

(2) implies (3). Suppose Y and/are as in (3). If U is a nonempty subset

of X, then U=\J {Ur>fo1iy):y£ Y}. Since (2) holds, there is j(C/) in Y
such that Ur\fo1iyiU))=KiU) is not nowhere dense. By 1.3, (3) holds.

(3) implies (4). Suppose (F, d) and/are as in (4). Let e>0. Let 03 be

a base for Y of cardinality ^m such that dia(7?)^e for every B in 03.

Endow 03 with the discrete topology. Define cp : X—*03' so that/(x) e fix)

for all x in X. Since (3) holds, there is a dense set 7)(e) such that cp\Die)

is continuous. Then 75(e) is the required set.

(4) implies (2). Suppose (7Qaer is as in (2). We may assume that

Kxr\Ky=0 if oi^y. Let F=ru{r} and let d denote the zero-one metric

on Y. Define f:X—*■ Y be letting/(x) = a for x in Kx and/(x)= Y for x not

in [J {Ka:oL e Y}. Since (4) holds, there is a dense subset D such that the

oscillation off\D at every point of D is S%. Then/|7J» is continuous. And,

for a in Y, Dr\Kx= 0 since Kx is nowhere dense. Hence (J {Kx: a e Y} is

not open.

1.5. Corollary. The following statements are equivalent for a topolog-

ical space X.

(1) X is a Baire space.

(2) If Y is a countable topological space and f:X—>-Y, then there is a

dense set D such that f\D is continuous.

(3) If iY,d) is a separable metric space and f:X~+Y then, for every

£>0, there is a dense subset Die) such that/|7)(e) has oscillation Se at

every point of Die).

1.6. Definitions. A pseudo-base [9] for a topological space ÍX, 5") is

a subset 0> of ST such that every nonempty element of &~ contains a
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nonempty element of SP. A subfamily 0* of &~ is called rr-disjoint if

0>=\J {0>n:n £ N}, where each 0*n is a disjoint family. (Here N denotes

the set of natural numbers.)

1.7. Proposition. If the Baire space ÍX, 0*~)hasa o-disjoint pseudo-base

0>, then 1.2 holds for X.

Proof. Suppose 00=\J {0gn:n e N}, where each &>n is a disjoint

family. We may assume that, for each n in N, G„={J 0>„ is dense in X

and 0in+x refines 0*n. Let Y=f] {Gn:n e N}. Since A' is a Baire space,

Y is dense in X. Let 0>iY) = {Pn Y:P e 0s}. Then 0>iY) is a base for a

topology &~* on Y and is a pseudo-base for the relative topology S~i Y)

on Y. Since each element of 0>i Y) is both open and closed in ( Y, 3~*),

i Y, ST*) is regular and 0^i Y) is a odiscrete base for &"*. Therefore

( Y, F*) is pseudo-metrizable. Clearly, ( Y, 3*~i Y)) is a Baire space. There-

fore, since a subset of Y is ^"(F)-dense if and only if it is <^~*-dense,

( Y, 0"*) is a Baire space.

Suppose/is a real-valued function defined on X. Since 1.1 is true if the

phrase "X is a metric space" is replaced by the phrase "X is a pseudo-

metric space", there is a ^*-dense subset D of Y such that/|F» is ¿7~*-

continuous. Clearly D is the required set.

Next, we identify some classes of spaces which have a-disjoint pseudo-

bases.

1.8. Definitions. A topological space is called quasi-regular [9] if

every nonempty open set contains the closure of a nonempty open set.

A pseudo-base 0* for X is called locally countable [9] if the set

{P':P' e &>, P'aP} is countable for every F in 0>.

1.9. Proposition. If ÍX, 0") satisfies any of the following conditions,

then 0*~ has a o-disjoint pseudo-base.

(1) There is a quasi-regular space Y which has a dense pseudo-metrizable

subspace such that X is a dense subset of Y.

(2) X has a locally countable pseudo-base 0>.

(2a) X has a countable dense subset D such that there is a countable local

base for 0" at each point of D.

(3) X is a semi-metrizable Baire space.

(4) A'=f3 {Xn:n e N}, where each Xn has a o-disjoint pseudo-base.

Proof. (1) We may assume that A' is a quasi-regular space with a dense

pseudo-metrizable subspace D. Then D has a cr-disjoint base 03. For each

B in 03, let UÍB) in ST be such that UiB)nD=B. Then {UiB):Be 03} is
a cr-disjoint pseudo-base for 0~.

(2) Let ^ denote a maximal disjoint subfamily of 3P. For U in ^¿,

let 0>iU)={P:Pe 0>,P<=U}. Then 0>iU) = {PiU, ri):n e N}. For n in N,
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let &>n={PiU, n): U e <W}. Then (J {^„:n £ TV} is a cr-disjointpseudo-base

forJT.

(2a) If X is as in (2a), then X has a countable pseudo-base.

(3) Suppose d is a semi-metric compatible with &~. For x in X and

e>0, let Six, e) denote the interior of the set {y.dix,y)<e}.

Define, by induction, a sequence i0>n)neN such that, for each n in TV,

(a) 0>n={Six, eníx)):x e Fn} and Fn^Fn+1,

(b) 0>n is a disjoint family, 0in+x refines 0>n, and (J á^„ is dense in X,

and
(c) enix)<2~n and e„+1(x) = e„(x)/2 for all x in Fn.

Let D=f) {(J 0>n:neN} and F=|J {F„:n eTV}. Then F is dense in
D and F> is dense in X. Let ^= \J {0>n:neN}. Since (c) holds and F is

dense in A", 0* is a pseudo-base for <^~.

(4) First, it follows that, for each n in TV, Jl {-**:^ e N, /V^n} has a

cr-disjoint pseudo-base &n. Suppose 0>n=\J {0'in,j):j £ TV}, where each

0>(n,j) is a disjoint family. For n,j in TV, let

0>*(n,j) = |i><n i*** £N,k>n}:P£ 0>in,j)Y

Then each 0>*in,j) is a disjoint family, and (J {0>*in,j):n,j e TV} is a

pseudo-base for FJ LYj.:/c e TV}.
1.10. Remarks. (1) It follows from 1.9(1) that, if M is a metric base

which is of the first category in itself, then 1.2 holds for ßM—M. (Here

ßM denotes the Stone-tech compactification of M.) Also, any subset of

ßM—M which is metrizable is nowhere dense in ßM—M.

(2) It is easy to verify that the subspace F in the proof of 1.9(3) is

metrizable. Thus any semi-metrizable Baire space contains a dense metriz-

able subspace. This strengthens a result of H. Bennett [2].

(3) It follows from 1.7 and 1.9(3) that 1.2 holds for every semi-metrizable

Baire space. This result was first proven by H. Bennett [2].

(4) The following statement, which is slightly more general than 1.7,

is true. If (X, 0*~) is a Baire space, 0* is a cr-disjoint subfamily of 9~ not

containing 0 , and f:X^>-R, then there is a subset D of X such that/|F>

is continuous and 7JOF# 0 for every P in 01.

1.11. Proposition. Suppose X is a quasi-regular compact space which

satisfies the following condition.

1.12. If (Un)neN is a sequence of open sets such that f) {Un:ne N}^0,

then int[fl {Un:n e N}]^0 ■ Then 1.4(1) holds for m = X,.

Proof. Suppose (GJ^r- is a family of dense open sets such that |T|^

Xj,. We may assume Y={x:a.<cox}. Let C/be a nonempty open set and let
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770 be a nonempty open set such that cl 770<= UC\G0. Suppose, for some

7> 1^7<wi. we have defined iHf)a<y such that

iy.l) if x<y then 77a is a nonempty open set and cl 77ac f/nG, and

iy.2) if o.<0L'<y then cl 77a,c//a.

Case 1. Suppose y=<5 + l. Then Gyr\Hô is a nonempty open set, so

there is a nonempty open set 7/, such that cl Hy<=Gyr\H6.

Case 2. Suppose y is a limit ordinal. Since (cl Hf)0l<y has the finite

intersection property, f] {cl 77a:a<y}^0. But, since y is a limit ordinal

and iy.2) holds, f] {cl 77a:a<y} = f) {Hx:o.<y}. Since 1.12 holds,

int[f) {77CI:a<y}]^0. Let 77, be a nonempty open set such that cl 77,,c

Gynint[D {Hx:a<y}].

So we have a family (77a)tt<a)i of nonempty open sets such that iwx ■ 1)

and icox ■ 2) hold. Since (cl 77Ja<tn has the finite intersection property,

H {cl77c,:a<o»1}#0. But

D {cl77a:a < cox} c U n [fj {Ga:a < ©JJ.

1.13. Corollary. Suppose 2**° = X,. 7/A w a locally compact, Hausdorff

space which satisfies 1.12, fVzen 1.2 holds for X.

1.14. Remarks. (1) If D is an infinite discrete space, then ßD—D

satisfies 1.12.

(2) If X is a Tx Baire space which has no isolated points and satisfies

1.12, then X does not have a cr-disjoint pseudo-base.

2. In this section, we describe two Baire spaces for which Blumberg's

theorem does not hold.

2.1. Example. Let 7? denote the set of real numbers and let 0~ denote

the density topology on 7? (see [7]). It was shown in [6] that (/?, 0^) is a

completely regular, Hausdorff space. We shall show that (7?, 0") is a

Baire space for which, if 2No=X1, statement 1.2 does not hold.

We shall denote Lebesgue outer measure, Lebesgue measure, and

Lebesgue inner measure by m*, m, and m*, respectively. Let .5? denote

the family of all Lebesgue measurable subsets of R and let S denote the

Euclidean topology on R. If ¡F is a family of subsets of 7? and 7?<= 7?, we

denote by &C\B the family {FC^B-.Fe^}.

Suppose A e ¿£ and x e R. The upper density of A at x, denoted by

d~ix, A), is defined to be

ImiA n I) ,\
lim(zt ->■ oo)sup-:/ a closed interval, x e 1,0 < mil) < n     .

I    m(7) )

The lower density of A at x, denoted by d_ix, A), is defined similarly.

If d~ix, A)=d_(x, A)=y, we say that A has density y at x and denote y

by dix, A).
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LetST={A £ y-.dix, A)=l for all x in A}. In [6] and [7], the following

Statements were proven.

(1) 0" is a topology for R containing S such that no point in 7? has a

countable ^-neighborhood base.

(2) A function/: R—>R is i&, ^-continuous if and only if it is approxi-

mately continuous [5] at every x in R.

(3) (7?, 0") is a completely regular, Hausdorff space which is not nor-

mal. (There are disjoint, countable, closed sets which are not completely

separated, and, even though every ^"-closed subset of R is a Gô relative

to 0~', there are 2C «^-closed subsets of R and only c subsets of 7Î which

are zero sets relative to 0*~.)

(4) If A e0", then F4, 0"r\A) is connected if and only if A eS and

ÍA, $C\A) is connected.

If A e &, then it follows from the Lebesgue density theorem [5, p. 174]

that^-int A = {xeA:dix, A)=l}. So, a subset D of R is ^"-dense in R

if and only if m#iR — D)=0. Therefore the intersection of a countable

family of ^-dense elements of 0^ is a ^"-dense element of 0*~.

2.1.1. Suppose f: R-^-R and A is a subset of R such that m*iA)>0 and

f\A is iTC\A, (o)-continuous. Then there is an uncountable set K contained

in A such that f\K is iSC\K, S)-continuous.

Proof. Since f\A is i0~nA, cf)-continuous and 0"^^C, f\A is

measurable (=Sf r\A). Let p* denote the restriction of m* to the family of

all subsets of A. Then »5?DA is the family of all /¿*-measurable subsets of

A. Let p=p*\i£T\A). If Se ^ DA and e>0, then there is an i<$DA)-

closed subset F of A such that F<= S and piS—F)<e. Hence Lusin's

theorem holds for L4, SfDA, SDA, p). Therefore, sincepíA)=m*ÍA)>0,

there is K in ¿fr\A such that m*ÍK)=p(A-)>0 and f\K is i^DK, ê)-
continuous. Since m*ÍK)>0, K is uncountable.

2.1.2. 7/2So=X1, then there is a function f: R-*R such that, if A<^ R and

f\A is (J~DA, S)-continuous, then miA)=0.

Proof. If 2n°=K1, then there is a function/:R-^-R such that, if A^R

and f\A is iê DA, if)-continuous, then A is countable [5, p. 148]. By

2.1.1, if/1/I is i^rsA, cf)-continuous, m*iA)=0.

It follows from 2.1.2 that, if 2i<0=X1, then Blumberg's theorem does

not hold for (R, 0~).

It might be conjectured that 1.2 holds for certain subclasses of the class

of Baire spaces. Dr. B. J. Pettis, in a letter, suggested that perhaps 1.2

holds for all cocompact [1] spaces, or for all a-favorable [4, p. 116]

spaces, or for all paracompact Baire spaces. We shall show that, if 2N° =

Xl5 none of these conjectures is true. We shall show that (R, 0^) is co-

compact, strongly a-favorable [4, p. 117], and pseudo-complete [8, p. 164].
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And, in 2.2, we shall give an example of a hereditarily Lindelöf, Baire

space for which Blumberg's theorem does not hold.

We need the following theorem which was proven in [6].

2.1.3. Lusin-Menchoff Theorem. Suppose A e <£ and F is an ê-

closed set such that Fc^"-int A. Then there is an ê-closed set P such that

F<^0~-intP^P^A.

2.1 A.    (7?, 0") is cocompact.

Proof. Let 0"* = {U eê:(R-U,£D(R-U)) is compact}U{0}. It

is clear that (R,0^*) is compact and 3~*<^0T. And^"* is a cotopology for

ÍR, 0^). For suppose x e A e 3T and A is a bounded subset of R. By

2.1.3, there is an «f-closed set F such that xe^-int P^P^A. Since

(F, ê DP) is compact, F is 0" »-closed.

It follows that (7?, 0") is strongly «-favorable since any regular, co-

compact space is strongly a-favorable.

2.1.5.    (R, 0") is pseudo-complete.

Proof. For each n in TV, let 03n denote the family of all nonempty

elements U of ST such that, if U* = S-cl U, a(U)=inf U*, and b(U) =

sup U*, then (1) (/J*, SdU*) is compact, (2) c»(i/)-a(£/)<l/n, and

(3) miU D [aiU), ¿>(t/)])/(ft(i7) - a(£/)) > 1 - rr\

It is easily verified that each 03n is a base for 9".

Now suppose that (i/B)neV is a sequence such that, for each n in TV,

Une03n and P-c\ Un+x<=Un. By (1), fl {*-cl £/„:« eTV}^0. By (2),
lim(«^-oo)(6(C/B)-a(£/„))=0. Hence f) {é'-cl Un:n e N} contains only

one point, say x0. Suppose n e TV. By (3),

..   ,. mjUnD [a(Uk), b(Uk)])
hm(k -*■ co)-= 1.

biUk) - aiUk)

Therefore d   (x0, Un)= 1 >0. Hence x0 e ^"-cl Un and

xoeÇ){0- -clUn.neN} = Ç){Un:n£ N}.

2.2. Example. Suppose 2So=K1. Let Jt be a disjoint subfamily of 3?

maximal with respect to the property: if A eJi, then there is a subset

SÍA) of A such that (1) nz*(S(/l))>0, (2) A is a measurable cover of SÍA),

and Í3) if Z<= SÍA) and miZ) = 0, then|Z|^X0. LetS=(J {SiA):A e J/}.
Since |^| SH0, (3), with S(A) replaced by S, holds. Since every Ain a1

of positive measure contains a subset S(A) of cardinality Kx for which (3)

holds [5, p. 168], m*(R-S)=0. Hence S is ^-dense in 7?.
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ÍS, 0"DS) is a Baire space; in fact, the intersection of a countable

family of open, dense subsets of (5", 0^DS) is an open, dense subset of

(5, 0"DS). By 2.1.2, Blumberg's theorem does not hold for ÍS, 0"dS).

Finally, it follows from the next statement that ÍS, 0^DS) is hereditarily

Lindelöf.

2.2.1. Ifo%(c^S^, then there is a countable subfamily *% of °U such that

mi\JW-\J<e)=0.

Proof. Let i/=(J °ll. We may assume that U is a bounded set; say

£/<= (—k, k), where k e TV. Let e>0. The family "F~, of all closed intervals

7 contained in (—k, k) for which there is £/(/) in U such that

mil D t/(7))//n(7) > 1 - 2ek-\

covers U in the sense of Vitali [5, p. 170]. So, by Vitali's theorem [5,

p. 170], there is a disjoint subfamily 3F of "f such that miU—\J 0r)=O.

Let1f(e) = {U(I):Ie0?}. Then m*(U-\J #(e))<e. Let

<g = (J {Vin-^-.neN}.

2.3. Remarks.    (1) It follows from 2.2.1 that (7?, ST) is weakly Lindelöf.

(2) Any subset A of R such that ÍA, 0~DA) is Cech complete is 3~-

nowhere dense and ÍA,0~DA) is discrete. For, if n/*(/l)>0, then A

has at least one nonisolated point, and every countable subset of A is

^-closed.

(3) Any subset A of S such that F4, 3"DA) is Cech complete is both

countable and ^"n^-nowhere dense.

(4) Even though 1^1=2°, the cardinality of 0TDS is c.

(5) Every ^"-open subset of R is an F„ relative to &*', hence (S, 0~DS)

is hereditarily perfectly normal.

(6) It would be interesting to know whether 1.2 holds for every compact,

Hausdorff space.

2.4. The author has been informed that R. F. Levy [8] has discovered,

independently, an example of a completely regular, Hausdorff Baire space

for which Blumberg's theorem does not hold.

3. If, in Theorem 1 of J. B. Brown's paper entitled Metric spaces in

which a strengthened form of Blumberg's theorem holds, Fund. Math. 71

(1971), 243-253, the phrase "A"is a metric space" is replaced by the phrase

"Xis a space with a cr-disjoint pseudo-base", then the resulting statement

is true. The proof of this is quite similar to the proof of 1.7.
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