ON A SUBCLASS OF SPIRAL-LIKE FUNCTIONS

E. M. SILVIA

ABSTRACT. Let $\alpha \ge 0$, $0 \le \beta < 1$, $|\lambda| < \pi/2$ and suppose that $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is holomorphic in $U = \{z : |z| < 1\}$. If

$$\operatorname{Re}\left[e^{i\lambda}\frac{zf'(z)}{f(z)} + \alpha\left(\frac{zf''(z)}{f'(z)} + 1 - \frac{zf'(z)}{f(z)}\right)\right] > \beta\cos\lambda$$

for $z \in U$, then f(z) is said to be $\alpha-\lambda$ -spiral-like of order β and we write $f(z) \in S^{\lambda}_{\alpha}(\beta)$. The author shows that for each $\alpha \ge 0$, $\alpha-\lambda$ -spiral-like functions of order β are λ -spiral-like of order β . The following representation theorem is obtained: The function $f(z) \in S^{\lambda}_{\alpha}(\beta)$ ($\alpha > 0$, $0 \le \beta < 1$, $|\lambda| < \pi/2$), if and only if there exists a function $F(\zeta)$ λ -spiral-like of order β such that

$$F(z) = \left[(e^{i\lambda}/\alpha) \int_0^z F(\zeta) e^{i\lambda/\alpha} \zeta^{-1} d\zeta \right]^{\alpha e^{-i\lambda}}$$

A distortion theorem for $\log |f(z)/z|$ and a rotation theorem for $\arg f(z)/z$ are also proved for functions $f(z) \in S_0^{\lambda}(\beta)$.

1. Let A denote the class of functions normalized by $f(z)=z+\sum_{n=2}^{\infty}a_nz^n$ which are analytic in U (|z|<1). For $0 \le \beta < 1$, we will let $S^*(\beta)$ represent the class of functions contained in A which are univalent and starlike of order β ; i.e., $f(z) \in S^*(\beta)$ if $f(z)=z+\sum_{n=2}^{\infty}a_nz^n$ is analytic and univalent satisfying Re $zf'(z)|f(z)>\beta$ ($z\in U$). Also, let P denote the class of analytic functions normalized by $p(z)=1+\sum_{n=1}^{\infty}c_nz^n$ such that Re p(z)>0 ($z\in U$).

A function $f(z) \in A$ is said to be spiral-like if there exists a λ ($|\lambda| < \pi/2$) such that Re $e^{i\lambda}zf'(z)/f(z) > 0$ ($z \in U$). L. Spaček defined the class of spiral-like functions in 1933 and showed that these functions are univalent [15].

In 1967, R. Libera [6] extended this definition to functions spiral-like of order β . We say that $f(z) \in A$ is λ -spiral-like of order β $(0 \le \beta < 1, |\lambda| < \pi/2)$ if Re $e^{i\lambda}zf'(z)/f(z) > \beta \cos \lambda$ $(z \in U)$.

A function $f(z) \in A$ satisfying $f(z)f'(z) \neq 0$ (0 < |z| < 1) is said to be α -starlike of order β $(\alpha \ge 0, 0 \le \beta < 1)$ if

$$\operatorname{Re}\left\{(1-\alpha)\frac{zf'(z)}{f(z)}+\alpha\left(\frac{zf''(z)}{f'(z)}+1\right)\right\}>\beta\qquad(z\in U).$$

Received by the editors March 1, 1973.

AMS (MOS) subject classifications (1970). Primary 30A36; Secondary 30A32. Key words and phrases. Univalent, α -starlike, λ -spiral-like.

For $\beta=0$, we have the class of α -starlike functions (of order zero) which has been thoroughly investigated in [7], [8], [9], [10], and [11]. Some of these results have been extended to $0 < \beta < 1$ by the author [13].

In this note, a class of functions which contains the classes of α -starlike functions of order β and λ -spiral-like functions of order β as special cases is defined; the functions in this new class will be shown to be λ -spiral-like. The author obtains an integral representation for the elements of this class in terms of λ -spiral-like functions of order β . Finally, a distortion and a rotation theorem for f(z)/z whenever f(z) is in this class is proved.

2. Just as the definition of λ -spiral-likeness of order β generalizes the definition of starlikeness of order β , we will generalize the definition of α -starlikeness of order β to α - λ -spiral-likeness of order β . In this section, we define the class of α - λ -spiral-like functions of order β —denoted $S^{\alpha}_{\alpha}(\beta)$ —and show that each $f(z) \in S^{\alpha}_{\alpha}(\beta)$ is λ -spiral-like of order β .

DEFINITION 1. Let $f(z)=z+\sum_{n=2}^{\infty}a_nz^n\in A$ and satisfy $f(z)f'(z)\neq 0$ in 0<|z|<1. Set

(1)
$$K(\lambda, \alpha, f(z)) = (e^{i\lambda} - \alpha)zf'(z)/f(z) + \alpha(zf''(z)/f'(z) + 1).$$

Then f(z) is said to be $\alpha-\lambda$ -spiral-like of order β if

(2) Re
$$K(\lambda, \alpha, f(z)) > \beta \cos \lambda$$
 $(z \in U)$

where $\alpha \ge 0$, $0 \le \beta < 1$, $|\lambda| < \pi/2$.

REMARKS. (i) For $\alpha = 0$, $S_0^{\lambda}(\beta)$ is the class of λ -spiral-like functions of order β .

(ii) For $\lambda=0=\beta$, we have $S^0_{\alpha}(0)$ —the class of α -star-like functions (of order zero); while $S^0_{\alpha}(\beta)$ ($\alpha \ge 0$, $0 \le \beta < 1$) is the class of α -star-like functions of order β .

In order to prove that $\alpha-\lambda$ -spiral-likeness of order β ($\alpha \ge 0$) implies λ -spiral-likeness of order β , we will need the following two lemmas: the first lemma is due to I. S. Jack [4] while the second is due to R. Libera [6].

LEMMA A. Let $\omega(z)$ be regular in U with $\omega(0)=0$. If there exists a $\zeta \in U$ such that $\max_{|z| \le |\zeta|} |\omega(z)| = |\omega(\zeta)|$, then $\zeta \omega'(\zeta) = k\omega(\zeta)$ for some $k \ge 1$.

LEMMA B. The function $f(z) \in A$ is λ -spiral-like of order β $(0 \le \beta < 1, |\lambda| < \pi/2)$ if and only if there exists an $\omega(z)$ analytic satisfying $\omega(0) = 0, |\omega(z)| < 1$ such that

$$e^{i\lambda} \frac{zf'(z)}{f(z)} = \beta \cos \lambda + (1 - \beta)\cos \lambda \left(\frac{1 - \omega(z)}{1 + \omega(z)}\right) + i \sin \lambda \quad (z \in U).$$

THEOREM 1. If $f(z) \in S_{\alpha}^{\lambda}(\beta)$ $(\alpha \geq 0, 0 \leq \beta < 1, |\lambda| < \pi/2)$ then f(z) is λ -spiral-like of order β .

Proof. Let

(3)
$$e^{i\lambda} \frac{zf'(z)}{f(z)} = \beta \cos \lambda + (1 - \beta)\cos \lambda \left(\frac{1 - \omega(z)}{1 + \omega(z)}\right) + i \sin \lambda.$$

Clearly, $\omega(0)=0$. In view of Lemma B, it suffices to show that $|\omega(z)|<1$. Simplifying (3), it follows that

(4)
$$e^{i\lambda} \frac{zf'(z)}{f(z)} = \frac{e^{i\lambda} \{1 + (2\beta e^{-i\lambda}\cos\lambda - e^{-2i\lambda})\omega(z)\}}{1 + \omega(z)}.$$

Differentiating (4) and using (1), we have

(5)
$$K(\lambda, \alpha, f(z)) = \beta \cos \lambda + (1 - \beta)\cos \lambda \left(\frac{1 - \omega(z)}{1 + \omega(z)}\right) + i \sin \lambda$$
$$+ \alpha \frac{\{2\beta e^{-i\lambda}\cos \lambda - e^{-2i\lambda}\}z\omega'(z)}{1 + (2\beta e^{-i\lambda}\cos \lambda - e^{-2i\lambda})\omega(z)} - \alpha \frac{z\omega'(z)}{1 + \omega(z)}.$$

Suppose that there exists a $\zeta \in U$ such that $\max_{|z| \le |\zeta|} |\omega(z)| = |\omega(\zeta)| = 1$. Clearly $\omega(\zeta) \ne -1$. From Lemma A, there exists a $k \ge 1$ such that $\zeta \omega'(\zeta) = k\omega(\zeta)$. For this ζ , we have

(6)
$$\operatorname{Re}(1 - \omega(\zeta))/(1 + \omega(\zeta)) = 0$$
, $\operatorname{Re} \zeta \omega(\zeta)/(1 + \omega(\zeta)) = k/2$.

Also, for

(7)
$$m = 2\beta e^{-i\lambda} \cos \lambda - e^{-2i\lambda},$$

$$\operatorname{Re} \frac{m\zeta\omega'(\zeta)}{1 + m\omega(\zeta)} = \operatorname{Re} \frac{k(|m|^2 + m\omega(\zeta))}{1 + |m|^2 + 2\operatorname{Re} m\omega(\zeta)}$$

$$= \operatorname{Re} \frac{k(|m|^2 + \operatorname{Re} m\omega(\zeta))}{1 + |m|^2 + 2\operatorname{Re} m\omega(\zeta)}.$$

Hence,

(8)
$$\operatorname{Re}\left(\frac{m\zeta\omega'(\zeta)}{1+m\omega(\zeta)}\right) - \operatorname{Re}\left(\frac{\zeta\omega'(\zeta)}{1+\omega(\zeta)}\right) = \frac{k(|m|^2-1)}{2(1+2\operatorname{Re} m\omega(\zeta)+|m|^2)}.$$

Thus, from (6), (7) and (8), it follows that

(9) Re
$$K(\lambda, \alpha, f(z)) = \beta \cos \lambda - \frac{2k\beta(1-\beta)\alpha \cos^2 \lambda}{1+|m|^2+2 \operatorname{Re} m\omega(\zeta)} < \beta \cos \lambda$$
,

contradicting the assumption that $f(z) \in S_{\alpha}^{\lambda}(\beta)$. Therefore $|\omega(z)| < 1$ in U and f(z) is λ -spiral-like of order β .

COROLLARY. If $f(z) \in S_{\alpha}^{\lambda}(\beta)$ then $f(z) \in S_{\gamma}^{\lambda}(\beta)$, $0 \le \gamma \le \alpha$.

PROOF. By Theorem 1, $f(z) \in S_0^{\lambda}(\beta)$. Suppose there exists a γ , $0 < \gamma < \alpha$, such that $f(z) \notin S_{\gamma}^{\lambda}(\beta)$. Then there is a $\zeta \in U$ for which

(10)
$$\operatorname{Re}\left(\frac{\zeta f''(\zeta)}{f'(\zeta)} + 1 - \frac{\zeta f'(\zeta)}{f(\zeta)}\right) \leq \frac{\beta \cos \lambda}{\gamma} - \frac{1}{\gamma} \operatorname{Re}\frac{\zeta f'(\zeta)}{f(\zeta)}.$$

However, for $f(z) \in S_{\alpha}^{\lambda}(\beta)$,

(11)
$$0 < -\beta \cos \lambda + \operatorname{Re} e^{i\lambda} \frac{\zeta f'(\zeta)}{f(\zeta)} + \alpha \operatorname{Re} \left(\frac{\zeta f''(\zeta)}{f'(\zeta)} + 1 - \frac{\zeta f'(\zeta)}{f(\zeta)} \right).$$

Substituting (10) into (11), we obtain

$$0 < (1 - \alpha/\gamma)(\operatorname{Re} e^{i\lambda} \zeta f'(\zeta)/f(\zeta) - \beta \cos \lambda).$$

But $(1-\alpha/\gamma) < 0$ implies Re $e^{i\lambda}zf'(z)/f(z) < \beta \cos \lambda$, contradicting the assumption that $f(z) \in S_0^{\lambda}(\beta)$. Thus, $f(z) \in S_{\gamma}^{\lambda}(\beta)$.

3. In this section, the author obtains an important integral representation for the elements of $S_{\alpha}^{\lambda}(\beta)$. Throughout this section α , β , λ will represent constants such that $\alpha>0$, $0\leq \beta<1$, $|\lambda|<\pi/2$.

DEFINITION 2. The function

$$f(z) = \left[(\gamma + i\mu) \int_0^z \sigma(t)^{\gamma} t^{-1+i\mu} dt \right]^{1/(\gamma+i\mu)}$$

where $\sigma(t) \in S^*(0)$, $\gamma > 0$, μ real, $z \in U$ and the powers are meant as principal values, is called a Bazilevič function of type $\gamma + i\mu$. Denote the class of such functions by $B(\gamma + i\mu)$ [2].

Due to a result by Eenigenburg et al. [3], we know that each $f(z) \in B(\gamma + i\mu)$ is spiral-like. The functions that we will use in order to characterize the elements of $S_{\alpha}^{\lambda}(\beta)$ are those obtained when $\gamma = (\cos \lambda)/\alpha$ and $\mu = (\sin \lambda)/\alpha$.

DEFINITION 3. A function $f(z) \in A$ is said to be a Bazilevič function of type $e^{i\lambda}/\alpha$ and order β if

(12)
$$f(z) = \left[\frac{e^{i\lambda}}{\alpha} \int_0^z \sigma(\zeta)^{(\cos\lambda)/\alpha} \zeta^{-1 + ((i\sin\lambda)/\alpha)} d\zeta \right]^{\alpha e^{-i\lambda}}$$

for some $\sigma(\zeta) \in S^*(\beta)$. Denote this by $f(z) \in B(e^{i\lambda}/\alpha, \beta)$. Immediate from Definition 3 is

Theorem 2. If $f(z) \in B(e^{i\lambda}/\alpha, \beta)$ then $f(z) \in S_a^{\lambda}(\beta)$.

PROOF. For $f(z) \in B(e^{i\lambda}/\alpha, \beta)$, it follows from (12) that

(13)
$$f'(z) = \sigma(z)^{\cos \lambda/\alpha} z^{-1 + ((i \sin \lambda)/\alpha)} f(z)^{1 - e^{i\lambda}/\alpha}.$$

Taking the logarithmic derivative of (13) we obtain an expression for [zf''(z)/f'(z)]+1. Substituting this into (1), we have

(14)
$$K(\lambda, \alpha, f(z)) = \cos \lambda z \sigma'(z) / \sigma(z) + i \sin \lambda.$$

Thus, Re $K(\lambda, \alpha, f(z)) > \beta \cos \lambda$ or $f(z) \in S_{\alpha}^{\lambda}(\beta)$.

Using the following lemma due to Basgöze and Keogh [1], a necessary and sufficient condition for f(z) to be in $B(e^{i\lambda}/\alpha, \beta)$ is obtained.

LEMMA C. A function $\sigma(\zeta) \in S^*(\beta)$ if and only if there exists a function $F(\zeta) \in S_0^{\lambda}(\beta)$ such that

(15)
$$(\sigma(\zeta)/\zeta)^{\cos \lambda} = (F(\zeta)/\zeta)^{e^{i\lambda}} \qquad (\zeta \in U).$$

LEMMA 1. A function $f(z) \in B(e^{i\lambda}/\alpha, \beta)$ if and only if there exists a function $F(\zeta) \in S_0^{\lambda}(\beta)$ such that

(16)
$$f(z) = \left[\frac{e^{i\lambda}}{\alpha} \int_0^z [F(\zeta)]^{e^{i\lambda}/\alpha} \zeta^{-1} d\zeta\right]^{\alpha e^{-i\lambda}}$$

where the powers are meant as principal values.

PROOF. From Definition 3, $f(z) \in B(e^{i\lambda}/\alpha, \beta)$ if and only if there exists a $\sigma(\zeta) \in S^*(\beta)$ satisfying (12). However, a necessary and sufficient condition for $\sigma(\zeta) \in S^*(\beta)$ is that there exists an $F(\zeta) \in S_0^{\lambda}(\beta)$ satisfying (15). Thus, for $f(z) \in B(e^{i\lambda}/\alpha, \beta)$, we may obtain

(17)
$$f(z) = \left[\frac{e^{i\lambda}}{\alpha} \int_{0}^{z} \sigma(\zeta)^{(\cos\lambda)/\alpha} \zeta^{-1+i(\sin\lambda/\alpha)} d\zeta\right]^{\alpha e^{-i\lambda}}$$

$$= \left[\frac{e^{i\lambda}}{\alpha} \int_{0}^{z} \left(\frac{\sigma(\zeta)}{\zeta}\right)^{(\cos\lambda)/\alpha} \zeta^{-1+(e^{i\lambda}/\alpha)} d\zeta\right]^{\alpha e^{-i\lambda}}$$

$$= \left[\frac{e^{i\lambda}}{\alpha} \int_{0}^{z} [F(\zeta)]^{e^{i\lambda}/\alpha} \zeta^{-1} d\zeta\right]^{\alpha e^{-i\lambda}},$$

where $\sigma(\zeta)$ and $F(\zeta)$ are as above. Since each step in (17) is reversible, the result follows from this identity.

REMARK. From Lemma 1, a necessary and sufficient condition for $f(z) \in B(e^{i\lambda}/\alpha, \beta)$ is that

(18)
$$F(z) = f(z)[zf'(z)/f(z)]^{\alpha e^{-i\lambda}}$$

where $F(z) \in S_0^{\lambda}(\beta)$. Also, $B(e^{i\lambda}/\alpha, \beta) \subset S_{\alpha}^{\lambda}(\beta)$. In order to obtain the

characterization for functions $f(z) \in S_{\alpha}^{\lambda}(\beta)$, we consider the converse problem. Given $F(\zeta) \in S_{0}^{\lambda}(\beta)$ and $\alpha > 0$, when is the solution to the differential equation (18) with boundary condition f(0)=0, a function that is $\alpha-\lambda$ -spiral-like of order β ? Since (18) may be rewritten as $[F(z)]^{e^{-i\lambda/\alpha}}/z = f'(z)f(z)^{-1+(e^{i\lambda/\alpha})}$ we may perform the integration with boundary condition f(0)=0 to obtain

$$f(z) = \left[\frac{e^{i\lambda}}{\alpha} \int_0^z \frac{[F(\zeta)]^{e^{i\lambda}/\alpha}}{\zeta} d\zeta \right]^{\alpha e^{-i\lambda}}.$$

We will now show the proper definitions for which this formal solution is indeed an $\alpha-\lambda$ -spiral-like function of order β .

LEMMA 2. Let $f(z) \in S^{\lambda}_{\alpha}(\beta)$. For $0 < \gamma \leq \alpha$, choose the branch of $[zf'(z)|f(z)]^{\gamma e^{-i\lambda}}$ equal to 1 when z=0. Then the function

(19)
$$F_{\nu}(z) = f(z)[zf'(z)/f(z)]^{\gamma e^{-i\lambda}}$$

is λ -spiral-like of order β .

PROOF. We have

$$e^{i\lambda}\frac{zF'_{\gamma}(z)}{F_{\gamma}(z)} = e^{i\lambda}\frac{zf'(z)}{f(z)} + \gamma\left(\frac{zf''(z)}{f'(z)} + 1 - \frac{zf'(z)}{f(z)}\right) = K(\lambda, \gamma, f(z)).$$

But by the corollary to Theorem 1, we have that $f(z) \in S_{\alpha}^{\lambda}(\beta)$ implies $f(z) \in S_{\gamma}^{\lambda}(\beta)$ $(0 \le \gamma \le \alpha)$. Therefore, Re $e^{i\lambda}zF_{\gamma}'(z)/F_{\gamma}(z) = \text{Re } K(\lambda, \gamma, f(z)) > \beta \cos \lambda$ and $F_{\gamma}(z) \in S_{0}^{\lambda}(\beta)$.

LEMMA 3. If $F(z)=z+A_2z+\cdots \in S_0^{\lambda}(\beta)$ then F(z) may be expressed as

(20)
$$F(z) = f(z)[zf'(z)/f(z)]^{\alpha e^{-i\lambda}},$$

where

(21)
$$f(z) = \left[\frac{e^{i\lambda}}{\alpha} \int_0^z [F(\zeta)]^{e^{i\lambda/\alpha} \zeta^{-1}} d\zeta \right]^{\alpha e^{-i\lambda}}$$

is an α - λ -spiral-like function of order β .

PROOF. Let $h(z) = z^{-e^{i\lambda/\alpha}} \int_0^z [F(\zeta)]^{e^{i\lambda/\alpha}} \zeta^{-1} d\zeta$. We have

$$f(z) = z[(e^{i\lambda}/\alpha)h(z)]^{\alpha e^{-i\lambda}}$$

so that if h(z) is independent of the path of integration it will follow that f(z) is well defined.

Since $F(z)=z(1+A_2z+\cdots)\in S_0^{\lambda}(\beta)$, we have that $(1+A_2z+\cdots)$ is

nonzero in U. Thus, we may write

(22)
$$(1 + A_2 z + \cdots)^{e^{i\lambda/\alpha}} = 1 + \sum_{n=1}^{\infty} c_n z^n$$

for the power series expansion about z=0. From (22), it follows that

(23)
$$\int_0^z F(\zeta)^{e^{i\lambda}/\alpha} \zeta^{-1} d\zeta = \alpha e^{-i\lambda} z^{e^{i\lambda}/\alpha} \left(1 + \sum_{n=1}^\infty \frac{c_n}{\alpha e^{i\lambda} n + 1} z^n + C \right).$$

To obtain a solution of (23) which is analytic and zero at the origin, take C=0. Thus, $h(z)=\alpha e^{-i\lambda}(1+\sum_{n=1}^{\infty}c_nz^n/(\alpha e^{i\lambda}n+1))$ is independent of the path of integration so that f(z) given by (21) is well defined.

That f(z) is $\alpha-\lambda$ -spiral-like of order β is a consequence of Theorem 2 and Lemma 1. Thus, the lemma is proved.

By combining the results of Theorem 2, Lemma 2 and Lemma 3, we have

THEOREM 3. A necessary and sufficient condition for f(z) to be in $S^{\lambda}_{\alpha}(\beta)$ is that f(z) have the integral representation

(24)
$$f(z) = \left[\frac{e^{i\lambda}}{\alpha} \int_0^z [F(\zeta)]^{e^{i\lambda}/\alpha} \zeta^{-1} d\zeta\right]^{\alpha e^{-i\lambda}}$$

for some $F(\zeta) \in S_0^{\lambda}(\beta)$, where the powers are assumed to be principal values.

PROOF. If f(z) is of the form (24), it follows immediately from Theorem 2 and Lemma 1 that $f(z) \in S_{\alpha}^{\lambda}(\beta)$. If $f(z) \in S_{\alpha}^{\lambda}(\beta)$, then—by Lemma 2 and Lemma 3—f(z) can be written in the form (24).

Note that we now have $B(e^{i\lambda}/\alpha, \beta) = S_{\alpha}^{\lambda}(\beta)$ for $\alpha > 0$, $0 \le \beta < 1$, $|\lambda| < \pi/2$.

4. We conclude this paper with a determination of a distortion theorem and a rotation theorem for f(z)/z whenever $f(z) \in M_0^{\lambda}(\beta) = M^{\lambda}(\beta)$ $(0 \le \beta < 1, |\lambda| < \pi/2)$.

For $f(z) \in M^{\lambda}(\beta)$ $(0 \le \beta < 1, |\lambda| < \pi/2)$ there exists a $p(z) \in P$ such that

(25)
$$e^{i\lambda}zf'(z)/f(z) = (1-\beta)\cos\lambda p(z) + \beta\cos\lambda + i\sin\lambda.$$

From (25) it follows that

(26)
$$e^{i\lambda}(zf'(z)/f(z) - 1) = (1 - \beta)\cos\lambda(p(z) - 1).$$

Throughout this section λ , β will denote constants satisfying $|\lambda| < \pi/2$, $0 \le \beta < 1$.

Using (26) we are able to obtain the convex hull of the image of $\log f(z)/z$ for fixed z (|z|=r<1) when $f(z) \in M^{\lambda}(\beta)$.

THEOREM 4. If $f(z) \in M^{\lambda}(\beta)$ then the set of all possible values of $\log f(z)/z$ (z fixed, |z|=r<1) lies in the image of $|z| \le r$ under the map

(27)
$$\omega(z) = \log[(1 - \varepsilon z)^{-2(1-\beta)e^{-i\lambda}\cos\lambda}], \quad |\varepsilon| = 1.$$

PROOF. Dividing both sides of (26) by $z\neq 0$, integrating from 0 to z and simplifying, we have

(27)
$$\log \frac{f(z)}{z} = (1 - \beta)e^{-i\lambda} \cos \lambda \int_0^z \frac{p(\zeta) - 1}{\zeta} d\zeta.$$

Since $p(z) \in P$, Herglotz's theorem [12] may be applied to obtain

(28)
$$p(\zeta) = \int_{-\pi}^{\pi} \frac{1 + \zeta e^{it}}{1 - \zeta e^{it}} d\mu(t)$$

where $\mu(t)$ is nondecreasing in $[-\pi, \pi]$ and $\int_{-\pi}^{\pi} d\mu(t) = 1$. From (28), it follows that

(29)
$$\frac{p(\zeta) - 1}{\zeta} = \int_{-\pi}^{\pi} \frac{2e^{it}}{1 - \zeta e^{it}} d\mu(t).$$

Substituting (29) into (27), we obtain

(30)
$$\log \frac{f(z)}{z} = -2(1-\beta)e^{-i\lambda}\cos\lambda \int_{-\pi}^{\pi} \log(1-e^{it}z) \, d\mu(t).$$

Let $q(z,t)=\log(1-e^{it}z)^{-2(1-\beta)e^{-t\lambda}\cos\lambda}$. Then $\operatorname{Re}\{1+zq''(z,t)/q'(z,t)\}=\operatorname{Re}[1/(1-ze^{it})]>\frac{1}{2}$. Thus, q(z,t) is univalent in z and maps $|z|\leq r<1$ onto a convex domain E, independent of t. From (30), we know that for fixed z (|z|=r<1) the points of $\log f(z)/z$ lie in the convex hull of E, denoted con E. However, since E is convex, $E=\operatorname{con} E$ and the points of $\log f(z)/z$ (z fixed, |z|=r<1) lie in the convex image of $|z|\leq r$ under the mapping $\omega(z)$ given by (27).

REMARKS. (i) For

$$\log f_t(z)/z = \log[(1 - e^{it}z)^{-2(1-\beta)}e^{-i\lambda}\cos\lambda] \qquad (-\pi \le t < \pi),$$

we have

$$f_t(z) = z(1 - e^{it}z)^{-2(1-\beta)e^{-i\lambda}\cos\lambda}$$

These $f_t(z)$ —for different t—are the extremal functions for Theorem 4.

(ii) We have

(31)
$$\log |f_t(z)/z| = \text{Re} \log[(1 - e^{it}z)^{-2(1-\beta)}e^{-i\lambda}\cos \lambda]$$

and

(32)
$$\arg f_t(z)/z = \operatorname{Im} \log[(1 - e^{it}z)^{-2(1-\beta)}e^{-i\lambda}\cos^{\lambda}].$$

Also, for $z=re^{i\theta}$ (0<r<1, 0 $\leq \theta$ <2 π) and $\eta=\theta+t$, we have

(33)
$$\log[(1 - e^{it}z)^{-2(1-\beta)e^{-i\lambda}\cos\lambda}] = T(r, \eta, \lambda, \beta) + iS(r, \eta, \lambda, \beta)$$

where

$$T(r, \eta, \lambda, \beta) = (1 - \beta)\cos \lambda \left\{ 2\sin \lambda \arctan \frac{r\sin \eta}{1 - r\cos \eta} - \cos \lambda \log(1 - 2r\cos \eta + r^2) \right\}$$

and

$$S(r, \eta, \lambda, \beta)$$

$$(35) = (1 - \beta)\cos\lambda \left\{ 2\cos\lambda \arctan\frac{r\sin\eta}{1 - r\cos\eta} + \sin\lambda \log(1 - 2r\cos\eta + r^2) \right\}.$$

Since $\{f_t(z)|t\in[-\pi,\pi]\}$ represent the extremal functions of Theorem 4, the distortion and rotation theorems follow from (31) through (35).

THEOREM 5. If $f(z) \in M^{\lambda}(\beta)$, for fixed z (|z|=r<1), $T(r, \eta_1, \lambda, \beta) \leq \log |f(z)/z| \leq T(r, \eta_2, \lambda, \beta)$ where

(36)
$$\eta_{1,2} = 2 \tan^{-1} \left\{ \frac{-\cot \lambda \mp (\csc^2 \lambda - r^2)^{1/2}}{1 + r} \right\}.$$

PROOF. It suffices to determine the bounds for $\log |f_t(z)/z|$ where $f_t(z)$ are the extremal functions for Theorem 4. Since $\log |f_t(z)/z| = T(r, \eta, \lambda, \beta)$ is a real-valued function of η , we may determine the maximum and minimum points by using elementary calculus. It follows that $\partial T/\partial\theta=0$ for $\eta_{1,2}$ given in (26). By examining $\partial^2 T/\partial\theta^2$, we find that $\partial^2 T/\partial\theta^2$ is positive for η_1 and negative for η_2 . The result follows.

THEOREM 6. If $f(z) \in M^{\lambda}(\beta)$ (z fixed, |z|=r<1), then

$$S(r, \eta_3, \lambda, \beta) \leq \arg f(z)/z \leq S(r, \eta_4, \lambda, \beta)$$

where

(37)
$$\eta_{3,4} = 2 \tan^{-1} \left\{ \frac{\tan \lambda \mp (\sec^2 \lambda - r^2)^{1/2}}{1 + r} \right\}.$$

PROOF. This follows immediately by applying the same procedures as in the proof of Theorem 5 to arg $f_t(z)/z = S(r, \eta, \lambda, \beta)$. Here $S(r, \eta, \lambda, \beta)$ is a real-valued function of η whose derivative is zero for $\eta_{3,4}$ —given by (37). The second derivative of S is positive for η_3 and negative for η_4 from which the result follows.

REMARK. For $\beta = 0$, Theorems 5 and 6 give us the known results for λ -spiral-like functions of order β [13].

REFERENCES

1. T. Basgöze and F. R. Keogh, The Hardy class of a spiral-like function and its derivative, Proc. Amer. Math. Soc. 26 (1970), 266-269. MR 41 #8680.

- 2. I. E. Bazilevič, On a case of integrability in quadratures of the Loewner-Kufarev equation, Mat. Sb. 37 (79) (1955), 471-476. (Russian) MR 17, 356.
- 3. P. Eenigenburg, S. Miller, P. Mocanu and M. Reade, On a class of Bazilevič functions, Notices Amer. Math. Soc. 19 (1972), A706. Abstract #72T-B293.
- 4. I. S. Jack, Functions starlike and convex of order α , J. London Math. Soc. (2) 3 (1971), 469-474. MR 43 #7611.
- 5. R. Libera, Univalent α -spiral functions, Canad. J. Math. 19 (1967), 449–456. MR 35 #5599.
- 6. S. S. Miller, Distortion properties of alpha-starlike functions, Proc. Amer. Math. Soc. 38 (1973), 311-318.
- 7. S. S. Miller, P. T. Mocanu and M. O. Reade, All α-convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37 (1973), 553-554.
- 8. —, Bazilevič functions and generalized convexity, Rev. Roumaine Math. Pures Appl. (to appear).
- 9. P. T. Mocanu, Une propriété de convexité généralisée dans la théorie de la représentation conforme, Mathematica (Cluj) 11 (34), (1969), 127-133. MR 42 #7881.
- 10. P. T. Mocanu and M. O. Reade, On generalized convexity of conformal mappings, Rev. Roumaine Math. Pures Appl. 16 (1971), 1541-1544.
- 11. R. Nevanlinna, Eindeutige analytische Funktionen, Die Grundlehren der math. Wissenschaften, Band 46, Springer-Verlag, Berlin, 1936; English transl., Die Grundlehren der math. Wissenschaften, Band 162, Springer-Verlag, Berlin and New York, 1970. MR 43 #5003.
- 12. E. Silvia, Classes related to α -starlike functions, Ph.D. Dissertation, Clark University, Worcester, Mass., 1972.
- 13. R. Singh, A note on spiral-like functions, J. Indian Math. Soc. 33 (1969), 49-55. MR 41 #454.
- 14. L. Spaček, Prispevek k teorii funkei prostych, Časopis Pěst. Mat. 62 (1933), 12-19.

DEPARTMENT OF MATHEMATICS, CLARK UNIVERSITY, WORCESTER, MASSACHUSETTS 01610

Current address: Department of Mathematics, University of California, Davis, California 95616