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NONLINEAR PERTURBATION OF
m-ACCRETIVE OPERATORS

W. E. FITZGIBBON!

ABSTRACT. Let X be a reflexive Banach space. Conditions
sufficient to guarantee that the sum A+B, of two m-accretive
operators A and B is m-accretive are provided. The basic require-
ments are that the operator B be bounded in some sense relative
to A and that 4 and B be weakly closed.

The object of this paper is the investigation of the additive perturbation
of a m-accretive, possibly nonlinear, operator 4 by a m-accretive, possibly
nonlinear, operator B. Our basic requirements are that the Banach space
be reflexive and that the operator B be bounded in some sense relative to
A. Our results relate to the work of T. Kato [8] and J. Mermin [12]
concerning perturbation in Banach spaces which have uniformly convex
dual. For recent work concerning perturbation the reader is referred to
G. F. Webb [14], [15], V. Barbu [1], J. Goldstein [6] and Y. Konishi [11].

In what follows X will be a reflexive Banach space with norm | - ||;
X* will denote the dual space of X, and the pairing between X and X*
will be denoted by ( , ). If 4 and B are operators mapping subsets of
X to X we define the sum 4+B by the equation (4+B)x=Ax+Bx
for x € D(A)ND(B).

DEFINITION 1.1. Let A be a nonlinear operator mapping a subset of a
Banach space X to X. A4 is said to be accretive provided that | x+4+A4x—
(y+24y)|Zllx—yl|l for all Az=0 and x, y € D(A4). An accretive operator
is said to be m-accretive provided that R(/+AA4)=X for all A1=0.

T. Kato [9] has shown that the definition of accretiveness is equivalent
to the statement that Re(dx—Ay,f)=0 for x,y € D(4) and some
f € F(x—y) where F is the duality map from X to X*. If 4 is an m-accretive
operator, A has no proper accretive extension. However not every maximal
accretive operator is m-accretive. If 4 is accretive and n € Z+ we define
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J.x={I+1/nd)"'x for xe€ D,=R(I+1/n4). We define the Yosida
approximations 4, x=n(I—J,)x. The following facts are well known:

Wox — Tyl = Ix =yl for x, y € D,,
IJ,x — x| Ent|Ax|| for xe D(4) N D,,
.1 A, x = AJ,x for xe D,,
I4,%| < [l Ax| for x € D(4) N D,.

If A is an m-accretive operator then 4, is an everywhere defined Lipschitz
continuous accretive operator with Lipschitz constant 2n.

Henceforth we shall use the symbol “—” to denote strong convergence
in X and “—” to denote weak convergence in X.

DErFINITION 1.2. Let 4 be a nonlinear operator mapping a subset of X
to X. 4 is said to be weakly closed provided that {x,}< D(4), x,—x,
and Ax,—y imply that x € D(4) and Ax=y.

If X is a reflexive Banach space and A is a weakly closed operator then
A has the following property: if {x,}< D(4), x,—x and [4x,||=M for
some M >0 then Ax,—Ax. Let us refer to this property of operators as
condition W. We now specify the type of perturbation to be considered.

DerINITION 1.3.  Let 4 and B be nonlinear operators defined on subsets
of a Banach space X. If D(4)< D(B) then B is said to be a perturbation
of A of type K provided that there exist constants a<1, =0 and ¢=0
so that,

(1.2) |Bx|| < alAx|| + b | x|| + ¢ for x € D(A).

We now make precise our notion of strong solutions to the Cauchy

initial value problem.
DEFINITION 1.4. Let A be an operator defined on a subset of a Banach
space X. By a strong solution to the Cauchy initial value problem,

(1.3) u'(t) + Au(t) = 0; u(0) = x,te[0, 7),
we mean a function u:[0, T)—X such that u is Lipschitz continuous on

compact subsets of [0, T); u(0)=x; u'(t) exists and satisfies (1.3) for

ae.te[0, 7).
We now provide conditions sufficient for the sum of two operators

to be accretive.

LemMA 1.1. Let A and B be nonlinear accretive operators on a Banach
space X. If B is m-accretive and satisfies condition W then A+ B is accretive.

ProoF. Let x € D(B) then condition W and equations (1.1) imply
that B,x=n(I—(I+1/nB)™")x converges weakly to Bx. Since B is m-
accretive, B, is accretive and everywhere defined. Moreover we can make
use of the equivalent formulation of accretiveness to observe that B,
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is strongly accretive, i.e. Re(B,x—B,y, )20 for all fe F(x—y). The
accretiveness of 4 implies that for each x, y € D(A4) thereisan f’ € F(x—y)
so that (Ax—Ay, f')=0. If we assume that x, y € D(4)ND(B) we can
conclude that

Re((4 + Bx) — (4 + B)y,f") = im((4 + B)x — (A + B)y,f") Z 0.

We now proceed to establish a global existence theorem for Cauchy
problems involving the operator 4+ B.

THEOREM 1. Let A and B be weakly closed m-accretive operators de-
fined on a reflexive Banach space X. If B is a perturbation of type K of A
then for each x € D(A) there exists a unique global solution to the Cauchy
initial value problem

(1.4 @)+ (4 + Bu(t) =0; u(0) = x forae. te]0, ).

ProOF. We proceed by picking an arbitrary 7< co and demonstrating
that (1.4) has a unique strong solution on [0, T]. Denoting B,x=
n(I—(I+1/nB)~)x, we consider the operators A+ B,. A recent result of
V. Barbu [1] together with the m-accretiveness of 4 and the continuity
of B, insures that 4+ B, is m-accretive. We now consider the approximate
Cauchy problems

(1.5  u,(+ (44 Bu,(t) =0; u(0) =x forte]0, T].

The m-accretiveness of A+ B, together with recent results of Crandall
and Liggett [3] and Brezis and Pazy [2] guarantee that for each n e Z+,
(1.5) has a strong solution; moreover each u,(¢) may be represented as the
product integral u,(t)=lim,_..(/+1(4+B,)/m);™ uniformly for re
[0, T]. Repeated applications of the fourth assertion of (1.1) yield

I4 + B,)I + 1(4 + B,n)[m);"| = |l 4x]| + | Bx]|.

We observe that condition W implies that (44 B,)(/+1(4+B,)[m);"—
(A+ B,)u,(t) and thereby insures the existence of a constant M >0 so that

lun () — u, (D =t — 7| M fort,7€[0, T];
luz(D = (A + Bu, (D =M forae. t€[0, T]

We now claim that there is a subsequence {u,.(t)} of {w,(t)} which
converges weakly to a function u(t) which also satisfies the Lipschitz
condition (1.6) with constant M. The argument of Lemma 2.1 [5] is
directly applicable to establish this convergence. We relabel the weakly
convergent subsequence as {u,(1)}.

We now seek to ascertain that (44 B,)u,(t)—(4A+B)u(t). Since
u,(t) € D(A), u,(t) € D(B); using properties of perturbations of type K

(1.6)
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and statements (1.1) and (1.6) we have

(I = a) [Au, ()] = b llu, ()] — ¢ = [[Au, (DIl — || Bu, (DIl
= [ Au, (Ol — 1B, (DI = M.

Because a<1 we can conclude that there is a constant M’ so that
| du,(t)| <M’ for 1€ [0, T],
| Bt () < M" for 1 € [0, T].
That Au,(t)—Au(t) follows from the fact that weakly closed operators
satisfy condition W. To see that B,u,(r)—Bu(t) we recall that B, x=
B(I+nB);'; use statement (1.1) to see that (/4+n—1B)~'u,(t)—u(t) and
apply condition W.

Since u,(t) is a strong solution to (1.5) we have the following equation:

(1.7)

(1.8)

(1) @O0 = ) = [(A+ B9 1) ds

for x € D(4), fe X*,t€[0, T].

Taking the limit as n—o0 of each side of (1.9) we obtain (u(t), f) = (x,f) —
{6((A + B)u(s), f) ds, and hence deduce that

u(t) =x —J:(A + B)u(s)ds for te [0, T).

The above integral can be differentiated and we obtain u'(z)+
(A4 B)u(t)=0 for a.e. t € [0, T} and u(0)=x. The uniqueness of solutions
to (1.4) on [0, T] follows from the accretiveness of 4+ B and standard
techniques, cf. [9].

The next lemma connects the m-accretiveness of an accretive operator
with the existence of strong solutions to a Cauchy initial value problem,
cf. Kato [8].

LemMa 1.2. Let X be a Banach space and A be a closed nonlinear
accretive operator. Then A is m-accretive provided that there exists an
x € D(A) such that for all p € X the Cauchy initial value problem

(1.10)  u'(t)+ (A4 + Du(t) —p=0; u(0) =x, tel0, o),
has a strong solution.

PrROOF. Let x € D(A) satisfy the hypothesis of the lemma; we shall use
the existence of a solution to (1.10) to show that there is a v € D(4) so
that v=Ilim,_,, u(¢) and (44 v—p=0. Thus R(J+A4)=X and we can

refer to a result of Oharu [13] to guarantee that R(/4+14)=X for all
A=0.
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Utilizing the accretiveness of 4 and standard techniques we see that for
ae. t,he[0, ) and fe Fu(t+h)—u(t)),

@jdt) lu(t + h) — u(®)|* = —2 Re{(4 + Du(t + h) — (4 + Du(1), )
= =2 lu(t + h) — u())?,
and hence that

@.11) (d/dr){e* u(t + h) — u()|?} = 0.
We integrate (2.11) on (0, ¢) to obtain the inequality
lut + 1) — u(@®)l = e=* u(h) — u(0)].

Since u is a strong solution to the Cauchy problem we can conclude that
there is a M >0 so that

(2.12) ') < etM fora.e. tel0, ).

Since [|u(t+h)—u(t)| S [t |lu’(s)|| ds we use (2.12) to conclude that there
is a v=lim,_, u(t). Let {#,};2, be an increasing sequence of numbers at
which equation (1.10) is satisfied such that lim 7,= co. By virtue of (2.12)
we have lim|[(4+41)u(t)—p| =0 and thus we can invoke the closedness of
A to establish (4+Hv=p.

We are now in a position to state and prove our principal result.

THEOREM 2. Let X be a reflexive Banach space and let A and B be
nonlinear, weakly closed m-accretive operators such that D(A)< D(B).
If B is a perturbation of A of tvpe K then A+ B is m-accretive.

Proor. Theorem 2 is obtained by defining B, x=(B+I)x—p. Clearly
if B satisfies the hypotheses of Theorems 1 and 2 then so does B,. Thus
Theorem 2 follows from Theorem 1 by immediate application of Lemma
1.2

If A is linear we have the following corollary:

COROLLARY. Let A be a closed linear m-accretive operator defined on a
reflexive Banach space X. If B is a nonlinear, weakly closed, m-accretive
perturbation of A of type K, then A+ B is m-accretive.

ProOOF. We need only observe that a strongly closed linear operator
is weakly closed.

If we further require that the operator B be everywhere defined and
weakly continuous, i.e., that B map weakly convergent sequences to weakly
convergent sequences, we can eliminate the requirement that B be bounded
relative to A.

THEOREM 3. Let A be a closed, linear m-accretive operator on a re-
flexive Banach space. If B is a nonlinear, weakly continuous accretive
operator then A+ B is m-accretive.
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Proor. In [4] it has been shown that a weakly continuous accretive
operator on a reflexive Banach space is m-accretive. Following the proof
of Theorem 1 we guarantee the existence of unique solutions to the
approximate equations u,(t)+ (A + B )u,(t)=0; u,(0)=x, t € [0, T].

As before we obtain the existence of M >0 so that |u,(t)—u,(7)|=
|t—7|M and [(A+B,)u,(1)|=M. We now observe that weakly con-
tinuous operators in reflexive spaces map bounded subsets to bounded
subsets. Since ||(I+n'B) " u,(1)—u, ()| =n~*(|Bu, ()l and [ B,u,()|=
| Bu,(t)| we see that || B,u,(t)] and | Au,(t)| are bounded independently of
n. We are now able to apply the remainder of the previous argument.
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