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NONLINEAR PERTURBATION  OF

w-ACCRETIVE  OPERATORS

W.   E.   FITZGIBBPN1

Abstract. Let J be a reflexive Banach space. Conditions

sufficient to guarantee that the sum A+B, of two m-accretive

operators A and B is m-accretive are provided. The basic require-

ments are that the operator B be bounded in some sense relative

to A and that A and B be weakly closed.

The object of this paper is the investigation of the additive perturbation

of a m-accretive, possibly nonlinear, operator A by a m-accretive, possibly

nonlinear, operator B. Our basic requirements are that the Banach space

be reflexive and that the operator B be bounded in some sense relative to

A. Our results relate to the work of T. Kato [8] and J. Mermin [12]

concerning perturbation in Banach spaces which have uniformly convex

dual. For recent work concerning perturbation the reader is referred to

G. F. Webb [14], [15], V. Barbu [1], J. Goldstein [6] and Y. Konishi [11].
In what follows X will be a reflexive Banach space with norm || • || ;

X* will denote the dual space of X, and the pairing between X and X*

will be denoted by ( , ). If A and B are operators mapping subsets of

I to I we define the sum A+B by the equation (A+B)x=Ax+Bx

for xe D(A)C\D(B).

Definition 1.1. Let A be a nonlinear operator mapping a subset of a

Banach space Xto X. A is said to be accretive provided that \\x+XAx—

(y+XAy)W^.\\x— y\\ for all X^.0 and x,ye D(A). An accretive operator

is said to be m-accretive provided that R(I+XA) = X for all X^.0.

T. Kato [9] has shown that the definition of accretiveness is equivalent

to the statement that Re(Ax—Ay,f)^.0 for x,yeD(A) and some

fe F(x—y) where Fis the duality map from A'to X*. If A is an m-accretive

operator, A has no proper accretive extension. However not every maximal

accretive operator is m-accretive. If A is accretive and n s Z+ we define
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Jnx=(I+l/nA)-1x for x e Dn=R(I+l¡nA). We define the Yosida

approximations Anx=n(I—Jn)x. The following facts are well known:

\\Jnx - Jny\\ = II* - jll for x, y £ Dn,

\\Jnx - x\\ S rr1 \\Ax\\ for x e D(A) n Dn,

Anx = AJnx for x £ Dn,

\\Anx\\ S \\Ax\\ for x £ D(A) n £>„.

If/I is an m-accretive operator then An is an everywhere defined Lipschitz

continuous accretive operator with Lipschitz constant 2«.

Henceforth we shall use the symbol "—*■" to denote strong convergence

in X and "—*•" to denote weak convergence in X.

Definition 1.2. Let A be a nonlinear operator mapping a subset of X

to X. A is said to be weakly closed provided that {xn}^D(A), xn-^x,

and Axn-^y imply that x e DiA) and Ax=y.

If X is a reflexive Banach space and A is a weakly closed operator then

A has the following property: if {xn}^ D(A), xn-^x and ||v4xJ|i2A/ for

some M>0 then Axn-^-Ax. Let us refer to this property of operators as

condition W. We now specify the type of perturbation to be considered.

Definition 1.3. Let A and B be nonlinear operators defined on subsets

of a Banach space X. If D(A)^ DiB) then B is said to be a perturbation

of A of type K provided that there exist constants a<l, b^.0 and c^O

so that,

(1.2) \\Bx\\ S a \\Ax\\ + b \\x\\ + c   for x e DiA).

We now make precise our notion of strong solutions to the Cauchy

initial value problem.

Definition 1.4. Let A be an operator defined on a subset of a Banach

space X. By a strong solution to the Cauchy initial value problem,

(1.3) u'it) + Auit) = 0;       uiO) = x, t e [0, T),

we mean a function u: [0, T)-^>-X such that u is Lipschitz continuous on

compact subsets of [0, T); u(0)=x; u'it) exists and satisfies (1.3) for

a.e. t e [0, T).

We now provide conditions sufficient for the sum of two operators

to be accretive.

Lemma 1.1. Let A and B be nonlinear accretive operators on a Banach

space X. If B is m-accretive and satisfies condition W then A+B is accretive.

Proof. Let x e DiB) then condition W and equations (1.1) imply

that Bnx=n(I—(I+l/nB)-1)x converges weakly to Bx. Since B is m-

accretive, Bn is accretive and everywhere defined. Moreover we can make

use of the equivalent formulation of accretiveness to observe that B„
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is strongly accretive, i.e. Re(Bnx—Bny,f)^.0 for all fe F(x— y). The

accretiveness of A implies that for each x,y £ D(A) there is an/' e F(x—y)

so that (Ax—Ay,f')^.0. If we assume that x,y £ D(A)C\D(B) we can

conclude that

Re((A + Bx) -(A+ B)y,f) = hm((A + Bn)x - iA + Bn)y,fo) ̂  0.

We now proceed to establish a global existence theorem for Cauchy

problems involving the operator A+B.

Theorem 1. Let A and B be weakly closed m-accretive operators de-

fined on a reflexive Banach space X. If B is a perturbation of type K of A

then for each x £ DiA) there exists a unique global solution to the Cauchy

initial value problem

(1.4) u'it) + iA + B)uit) = 0;       «(0) = X  for a.e. t e [0, oo).

Proof. We proceed by picking an arbitrary T< oo and demonstrating

that (1.4) has a unique strong solution on [0, T]. Denoting Bnx=

n(I— (I+l¡nB^^x, we consider the operators A+Bn. A recent result of

V. Barbu [1] together with the m-accretiveness of A and the continuity

of Bn insures that A+B„ is m-accretive. We now consider the approximate

Cauchy problems

(1.5) u'nit) + ÍA + Bn)unit) = 0;       //(O) = x   for t £ [0, T].

The m-accretiveness of A+Bn together with recent results of Crandall

and Liggett [3] and Brezis and Pazy [2] guarantee that for each // e Z+,

(1.5) has a strong solution; moreover each u„(t) may be represented as the

product integral u„(t) = limm^cc(I+t(A+B„)lm)xm uniformly for t£

[0, T\. Repeated applications of the fourth assertion of (1.1) yield

1104 + B„)(I+t(A + Bnn)¡m)-Xm\\ S \\Ax\\ + \\Bx\\.

We observe that condition IF implies that iA+Bn)iI+tiA+B„)¡m)x""^

(A + Bf)un(t) and thereby insures the existence of a constant M>0 so that

IK(f) - ii.(t)| S \t - r\ M   fort,re [0, T];

(L6) IKWII = \\(A + Bn)unit)\\ < M    for a.e. t £ [0, T].

We now claim that there is a subsequence {//„'(')} of {^„(0} which

converges weakly to a function u(t) which also satisfies the Lipschitz

condition (1.6) with constant M. The argument of Lemma 2.1 [5] is

directly applicable to establish this convergence. We relabel the weakly

convergent subsequence as {«„(/)}•

We now seek to ascertain that (A + B„)un(t)^-(A+B)u(t). Since

un(t) e D(A), un(t)e D(B); using properties of perturbations of type K
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and statements (1.1) and (1.6) we have

(1 - a) \\Aunit)\\ - b \\un(t)\\ - c < \\Aunit)\\ - \\Bunit)\\

= \\Aunit)\\ - \\Bnunit)\\ S M.

Because a<l we can conclude that there is a constant M' so that

\\Aunit)\\ SM'    for t£ [0,7],
(1 .O Ï

\\B„unit)\\ S M'   for t e [0, T).

That Aun(t)^-Au(t) follows from the fact that weakly closed operators

satisfy condition W. To see that Bnun(t)-^-Bu(t) we recall that Bnx=

Bil+n^B)^1; use statement (1.1) to see that (I+n-^By^uJfy-^uit) and

apply condition W.

Since u„it) is a strong solution to (1.5) we have the following equation:

(] 9) <«„(o,/> = <*>/) -J/-4 + *»)««(*)»/>ds

forxG D(4/Er,(6[0, T].

Taking the limitas//^-co ofeachsideof (1.9) we obtain (w(r),/) = (x,/) —

JÓ ((A + B)u(s),f) ds, and hence deduce that

«(?) = *-( (/( + B)uis) ds   for / s [0, T].

The above integral can be differentiated and we obtain u\t) +

(A + B)u(t) = 0 for a.e. t e [0, T] and u(0)=x. The uniqueness of solutions

to (1.4) on [0, T] follows from the accretiveness of A+B and standard

techniques, cf. [9].

The next lemma connects the m-accretiveness of an accretive operator

with the existence of strong solutions to a Cauchy initial value problem,

cf. Kato [8].

Lemma 1.2. Let X be a Banach space and A be a closed nonlinear

accretive operator. Then A is m-accretive provided that there exists an

x 6 D(A) such that for all p £ X the Cauchy initial value problem

(1.10)     u'(t) + (A + I)u(t) - p = 0;       «(0) = x,    t£ [0, oo),

has a strong solution.

Proof. Let x £ D(A) satisfy the hypothesis of the lemma; we shall use

the existence of a solution to (1.10) to show that there is a v e D(A) so

that v = Y\mt^xu(t) and (A+I)v—p=0. Thus R(I+A)=X and we can

refer to a result of Oharu [13] to guarantee that R(I+ XA)=X for all

A>0.
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Utilizing the accretiveness of A and standard techniques we see that for

a.e. t, h £ [0, oo) and/e F(u(t+h)-u(t)),

(d/dt) \\u(t + h) - u(t)\\2 = -2 Re((A + I)u(t + h) - (A + I)u(t),f)

S -2 \\u(t + //) - //(/)||2,

and hence that

(2.11) (d¡dt){e2t \\u(t + h) - u(t)\\2} SO.

We integrate (2.11) on (0, /) to obtain the inequality

||//(/ + //)- „(01 S e-* \\u(h) - u(0)\\.

Since u is a strong solution to the Cauchy problem we can conclude that

there is a M>0 so that

(2.12) \W(t)\\ S e-'M   for a.e. t e [0, oo).

Since \\u(t+h) — u(t)\\S}'1+h \\u'(s)\\ ds we use (2.12) to conclude that there

is a t' = lim,^ü0 u(t). Let {t¡}^i be an increasing sequence of numbers at

which equation (1.10) is satisfied such that lim t,= co. By virtue of (2.12)

we have lim||(.4 + /)//(/,)— /»||=0 and thus we can invoke the closedness of

A to establish (A + I)v=p.

We are now in a position to state and prove our principal result.

Theorem 2. Let X be a reflexive Banach space and let A and B be

nonlinear, weakly closed m-accretive operators such that D(A)çz D(B).

If B is a perturbation of A of type K then A+B is m-accretive.

Proof. Theorem 2 is obtained by defining B„x=(B+I)x—p. Clearly

if B satisfies the hypotheses of Theorems 1 and 2 then so does B„. Thus

Theorem 2 follows from Theorem 1 by immediate application of Lemma

1.2.
If A is linear we have the following corollary:

Corollary. Let A be a closed linear m-accretive operator defined on a

reflexive Banach space X. If B is a nonlinear, weakly closed, m-accretive

perturbation of A of type K, then A+B is m-accretive.

Proof. We need only observe that a strongly closed linear operator

is weakly closed.

If we further require that the operator B be everywhere defined and

weakly continuous, i.e., that B map weakly convergent sequences to weakly

convergent sequences, we can eliminate the requirement that B be bounded

relative to A.

Theorem 3. Let A be a closed, linear m-accretive operator on a re-

flexive Banach space. If B is a nonlinear, weakly continuous accretive

operator then A+B is m-accretive.
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Proof. In [4] it has been shown that a weakly continuous accretive

operator on a reflexive Banach space is m-accretive. Following the proof

of Theorem 1 we guarantee the existence of unique solutions to the

approximate equations u'n(t) + (A+Bn)un(t)=0; un(0) = x, t e [0, T].

As before we obtain the existence of Af>0 so that \\un(t)—un(r)\\S

\t — t\M and \\(A+ Bn)un(t)\\SM. We now observe that weakly con-

tinuous operators in reflexive spaces map bounded subsets to bounded

subsets. Since ||(/+fr^B)-1y„(0-M„(0ll^»-M|5«n(0l and \\Bnun(t)\\S
\\Bun(t)\\ we see that \\Bnun(t)\\ and ||^i/n(0ll are bounded independently of

n. We are now able to apply the remainder of the previous argument.
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