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MAXWELL'S  COEFFICIENTS  ARE
CONDITIONAL  PROBABILITIES

REUBEN  HERSH

Abstract. The capacitance coefficients of electrostatics are

represented as conditional probabilities associated with Brownian

motion. It follows, as an immediate consequence, that these co-

efficients depend monotonically on their domains.

The "capacitance matrix" or "induction coefficients" of Maxwell are

familiar in both electrostatics and the theory of conformai mapping. Let

there be given a disjoint system of closed, bounded conductors Tx, • • • ,Tn

whose union V we regard as the boundary of a region 3s in the plane or in

3-space. Then the charges Qt and the potentials U} on these boundary

components are related by a system of linear equations, (2I=2í'=i cuUj,

whose coefficients c¿3 depend only on the boundary surfaces r¿. Setting

Ui = ôij, we see that each coefficient ci} gives the charge induced on T{

by a unit potential on Tjt In two dimensions, 3¡ is multiply connected, and

the ci3 play a central role in the study of conformai mappings of multiply

connected regions (see [5]).

It is physically obvious that cti^0 if iftj, and ctiS0, and it is easily

proved that (ci}) is symmetric and positive semidefinite; the electrostatic

energy of the system is i2?.i=i ^uUAJj. In three (or more) dimensions cu

is nonsingular (see [2], [4]). In two dimensions, 2F=i ca = 0, and zero is a

simple eigenvalue of the matrix (ci}), corresponding to the null vector

(1,1, ••-,!) (see [5]).

In this note we give the probabilistic meaning of cit. This is so natural

and simple, it is rather surprising it has not been noticed before now. In a

sense we will make precise — eö/c« is the conditional probability that a

Brownian particle, which initially is near T¿, first meets the boundary at

Yj. We use this interpretation to give a new proof that each cit is monotonie

as a domain functional. That is, if all the conductors but the kth remain

fixed, and the kth is enlarged, then cik increases, and —ckk increases, but

Presented to the Society, May 23, 1972; received by the editors April 24, 1972 and, in

revised form, September 14, 1973.

AMS (MOS) subject classifications (1970). Primary 60J45; Secondary 31A15.

Key words and phrases. Maxwell's coefficients, capacitance.

© American Mathematical Society 1974

449



450 REUBEN   HERSH [June

cu and — cu decrease (/',/ and k all unequal to each other). From the

probabilistic interpretation this property is immediate; to prove it analyti-

cally requires powerful tools (Hadamard's variational method).

In the special case n=l, we have only a single coefficient, which in the

three-dimensional case is simply the capacity of T. This in itself is the

subject of a well-known and elaborate theory.

Our analysis is based on two well-known facts about H¡,the z'th harmonic

measure on 3. By definition, w¡ is the unique function which is harmonic

in 3, is equal to 1 on r¿, and vanishes on Y^j^i. In terms of electro-

statistics, wt is the potential induced by raising the ith conductor to unit

potential, and grounding the remaining n—1 conductors.

The first fact about vv¿ which we need is its connection with cu. If we

let k=lj2ir in the two dimensional case and k=l\4-n in the three-dimen-

sional case, and if g is a variable point in Y¿, then cu=k j"r. idw^dn) dQ.

This follows immediately from the elementary principle in electrostatics

that the charge density on a single layer distribution is k times the normal

derivative of the potential. Here dwj/dn is the normal derivative pointing

from I\ into 3. If Y, is a "slit", then both normal directions point into 3,

and the integration is over both sides of I\.

The second fact we need about w{ is its probabilistic interpretation:

w¿(F) gives the probability that a Brownian particle, which initially is at

P, is "absorbed" at T¿—i.e., it first meets Y in r¿. (See [1] or [3].)

We want to compute the probability, which we will denote by//,-,-, that a

particle undergoing Brownian motion which manages to escape from the

neighborhood of T¿ is ultimately absorbed at Y¡ (j^i). The difficulty is

that we are conditioning on an event with infinitesimal probability—the

event that a particle close to Y, manages to be absorbed anywhere but at

r,. Nevertheless, we can give a meaningful definition in elementary terms,

without resorting to sophisticated probabilistic tools. Let S=S(i, e) be the

set of points in 3 whose distance from Y, is less than or equal to e. We

consider the sample space consisting of Brownian motions whose initial

position is distributed at random, uniformly, over S. In this sample space,

we let A(i,j, s) be the event that the path is absorbed at Y¡—first meets the

boundary Y in itsy'th component. We let B(i, e) be the event that the path is

not absorbed at r,~that it meets Y first at some Y^jj^i, or never meets

any component of Y. Now, for ijtj, we simply define /»„ as the limit, as

e goes to zero, of the conditional probability of A(i,j, e) given B(i, e).

We first consider the case where the surfaces T, are especially well-

behaved. We call Y, "admissible" if it is smooth and has finite area and

bounded normal curvature.

We let H^ll and ||r¿|| denote the volume of 5 and the area of Y{. (In the

two-dimensional case, of course, \\S\\ is an area and |] r*f || is a length.)
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Theorem.   If T¿ is admissible, pu=—c^c^.

Proof.   We will prove that, for ijtj,

cij = limi2k\\Yi\\le)probAii,j,e)
£-►0

and

cH= -lim(2/c||ri||/£)probB(/,£).
£-►0

This will give the Theorem, because A<=B, and therefore

prohiAjB) = probF4 n 7i)/prob B = prob /1/prob B.

Now, in view of the probabilistic interpretation of w} given above,

prob A =    WjiP) dPI\\S\\    and   prob B = f (1 - w¿P)) dP¡\\S\\.
Js Js

Since Y, is smooth and has bounded normal curvature, there is at each

point Q in T, a unit normal vector n(Q) pointing into 3, and for e

sufficiently small each point P in Sí¡, e) has a unique representation

P=Q+rniQ), OSrSe. The pair r, Q constitutes a normal-tangential co-

ordinate system in S. In this coordinate system,

f WjiP) dP = Cdr Í WjiQ + rníQ))Jir, Q) dQ,
JS Jo     Jr,

where the Jacobian 7(r, Q) satisfies 7(r, 0=1+0(r) uniformly in Q.

Using a finite Taylor expansion for w¡ in powers of r, we have

Wj(P) = w,(0 + ridldn)w,iQ) + r20,(F)

= ôu + /-(r3/3n)w,(0 + r%(P),

where 0; is a bounded function of P. Therefore

I Wj(P) dP = [dr \ Wj(Q + rn(Q))J(r, Q) dQ
Js Jo     Jr..

-MS| +^i T»AQ)dQ + R,
2 Jrt on

where the error term R is 0(e2) uniformly in Q. Divide by ||5||, observe

that e/||S||->-l/||l\|| as e->-0, and the conclusion follows.

Now suppose r¿ has singularities, such as edges, corners, or cusps. If

these singular points are a set of zero Hausdorff measure, the surface

integrals c„ are still well defined. If I\ is the uniform limit of a sequence of
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admissible surfaces T, „ which have uniformly bounded normal curvatures,

and whose areas converge to the area of Y{, then a standard limiting argu-

ment again givespij=—cijlcii. On the other hand, if Y{ is everywhere or

almost everywhere nondifferentiable, our theorem fails; indeed, in this

case c,j is not well defined, at least from the viewpoint of classical potential

theory. Our proof suggests the possibility of defining a "generalized

capacitance matrix" by

c,j = lim(2/c||S||/£2)prob/l(/,y,e)

and

c„ = -lim(2/c||S||/£2)prob B(i, e).
£-0

Corollary 1.    Let 3k<=-3k, ^=1^, jj^k, Let c'iS be the Maxwell

coefficients associated with Y'j. Then, if i,j and k are all unequal,

Proof. If Yk is enlarged, while all other components of Y are un-

changed, then all the paths from S(z, e) which were formerly absorbed by

Yk will still be absorbed by Y'k; moreover, some of the paths from S(z, e)

which were absorbed by T, will now be absorbed at Y'k. The conclusion

follows.

Corollary 2. The ratio —cij\cii is a monotonie nondecreasing function

of Yj and a monotonie nonincreasing function of Yk, k^i and k^j.

Proof. The conditional probability of Aii,j, e) given 7i(z, e) is clearly

increased by enlarging T, and decreased by enlarging Yk. The conclusion

follows by letting e—>-0.

Brownian motion can also be used to prove some other properties of cu

mentioned earlier. The symmetry of the matrix (ctj) expresses the reversi-

bility of Brownian motion. (That is, if Tx is a collection of Brownian tra-

jectories x(t), txStSt2, satisfying x(i,) = F, x(t2) = Q, and if F2 is the

collection of reversed trajectories {y(t) e T2iff y(t)=x(tx + t2 — t), x(t) e F,}

then the conditional probability of the collection Tx, given x(tx)=P,

x('2) = Qy equals the conditional probability of F2, given x(tx) = Q,

xit2)=P.)

The fact that 2?=i ca — ® 'n lw0 dimensions, but not in three, is an

expression of the fact that Brownian motion is recurrent in two dimensions

and transient in three dimensions. That is, in three dimensions, but not in

two, there is a positive probability that the path escapes to infinity without

being absorbed at any r¿. In terms of pi}, this means 2>F¿;=1 m two

dimensions, but if 3 is unbounded, 2¿/'¡7<l 'n three dimensions. If we
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regard infinity as an ideal (« + l)st component of Y in the three-dimensional

case, we would have 2K;jv¿/'m = 1 anc^ 3=i cn=®-

If one of the components, say ris is a closed surface (or closed curve in

the two-dimensional case) then, if Y{ is in the interior of Yx and r, is in the

exterior of Yx, we must have c„=0. This important elementary fact in

electrostatics is now obvious from the continuity of the paths of the

Brownian particle.
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