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APPROXIMATING  FIXED  POINTS

OF  NONEXPANSIVE  MAPPINGS

H.   F.   SENTER  AND  W.   G.   DOTSON,  JR.

Abstract. A condition is given for nonexpansive mappings

which assures convergence of certain iterates to a fixed point of the

mapping in a uniformly convex Banach space. A relationship

between the given condition and the requirement of demicom-

pactness is established.

Introduction. Browder [1] and Kirk [7] have shown that a nonexpan-

sive mapping T which maps a closed, bounded, convex subset Cofa uni-

formly convex Banach space into itself has a nonempty fixed point set

in C. In general, however, for arbitrary x £ C the Picard iterates Tnx

do not converge to a fixed point of T. It will be shown that if T satisfies

one additional condition, then an iterative process of the type introduced

by W. R. Mann [8] converges to a fixed point of T. For nonexpansive

mappings T which have fixed points, this additional condition is weaker

than the requirement that T be demicompact.

Convergence to a fixed point. Let Ibe a Banach space with norm

| • | and C a convex subset of X. A self-mapping T of C is said to be

nonexpansive provided | Tx— Ty\ S \x—y\ holds for all x, y £ C. A mapping

T:C~^C with nonempty fixed point set F in C will be said to satisfy

Condition I if there is a nondecreasing function/: [0, oo)—»-[0, oo) with

f(0)=0, f(r)>0 for r £ (0, oo), such that \x-Tx\^f(d(x, F)) for all

x £ C, where d(x, F) = inf{\x—z\:z £ F}.

Let P denote the set of positive integers. For xx £ C, M(xx, tn, T) is the

sequence {xn} defined by xri+x = (l—tf)xn + tnTxn where tn£ [a, b] for

all n£P and 0<a</3<l. This iterative process has been previously

investigated by Dotson in [4].

Our main result for nonexpansive mappings is the following:

Theorem 1. Suppose X is a uniformly convex Banach space, C is a

closed, bounded, convex, nonempty subset of X, and T is a nonexpansive

mapping of C into C. Let F denote the fixed point set of T in C, and suppose
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T satisfies Condition I. Then for any xx £ C, M(xx, tn, T) converges to a

member of F.

Given that F is nonempty (which in Theorem 1 is assured by the Browder-

Kirk theorem [1], [7]) the proof that M(xx, tn, T) converges to a fixed

point uses only the fact that T is nonexpansive about its fixed points

(see Theorem 2 below). Theorem 1 will follow immediately as a corollary

of Theorem 2. As in [3], a self-mapping T of C will be called quasi-

nonexpansive provided T has a fixed point in C and if p £ C is a fixed

point of T then \Tx—p\S\x—p\ is true for all x £ C. The class of quasi-

nonexpansive mappings includes continuous as well as discontinuous

mappings which are not nonexpansive. One can easily prove that T: C-+C

is quasi-nonexpansive if Thas a fixed point in C and for x,y £ C satisfies

either

(A) \Tx - Ty\ S ß[\x - Tx\ + \y - Ty\],        OSßSlß,

or

(B) \Tx-Ty\Sa\x - Tx\ + b\y - Ty\ + c\x - y\,

where a, b, c>0 and a + b + cSl.

Mappings which satisfy the requirement (A) or (B) have been recently

investigated by Kannan [6] and Reich [12] respectively.

For a uniformly convex Banach space X, Dotson [4] has shown that if

{wn} and {yn} are sequences in the closed unit ball of X and if {z„} =

{(1— tn)wn + tnyn} satisfies lim|z„| = l, where tn e [a, b] for 0<a</3<l,

then lim|vt're—j»„| =0. This result will be used in the proof of

Theorem 2. Suppose X is a uniformly convex Banach space, C is a

closed, convex subset of X and T is a quasi-nonexpansive mapping of C into

C. If T satisfies Condition I, where F is the fixed point set of T in C, then

for arbitrary xx e C, M(xx, tn, T) converges to a member of F.

Proof. If xx e F the result is trivial, so we assume xx e C~F. For

arbitrary z 6 F we have for n e P that | Txn—z\ S \xn—z\ and so

l*„+i -z\Sil - tn) \xn -z\+tn \Txn -z\S \xn - z\.

Thus, dixn+x, F)Sdixn, F) for all n £ P. The sequence {dix„, F)} is

nonincreasing and bounded below, so lim dixn, F) exists. We now show

(indirectly) that this limit must be zero, and in turn, that {xn} converges

to a member of F.

Suppose Urn dixn, F)=b>0. Then for z0 e F, lim\x„—z0\=b"^.b>0.

Choose A/>0 such that \xn-z0\S2b' for n^N. If we let yn =

(Txn-z0)l\xn-z0\ and wn=ixn-z0)l\xn-z0\, then \yn\Sl and |h'J = 1
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for all n £ P; and for n^N

1   ?     '"'       \xn - z0|   =   \xn - z0|   = 2b' *   ■

Therefore, lim|w„—yJjíO. Moreover

lim |(1 - r„)vt»„ + tnyn\ = lim \xn+x - z0|/|x„ - z0\ = b'\b' = 1.

However, by the contrapositive of Dotson's result [4] stated above, since

lim|M>„—jj#0 then the existence of Iim|(l — tn)wn + t„yn\ implies

lim\(l—t„)wn + tny„\7¿l, a contradiction. Therefore, lim d(xn, F)=0.

We show that this implies {xn} converges to an element of F.

Since lim d(xn, F)=0, given e>0 there exists A^O and zE e F such that

\xN — zE|<e, which implies \xn—ze\<e for all n^Nt. Thus, if sk=l/2k

for k £ P, then corresponding to each ek there is an Nk>0 and a zk e F

such that \xn—zk\Sek¡4 for all n^.Nk. We require Nk+x^Nk for all k £P.

We have for all k £ P

\zk - zk+x\ = \zk - xiVj+i + xNm - zk+x\ < ek¡4 + sk+xl4 = 3eA.+1/4.

Let S(z, s) = {x £ X: \x—z\Se} denote the closed sphere centered at z of

radius e. For x e S(zk+X, ek+x) we have

\zk - x\ = \zk - zk+x + zk+x - x\ < 3et+i/4 + ek+x < 2ek+x = ek.

That is, Sizk+X, €k+x)ç: Sizk, ek) for keP. Thus, {Sizk, ek)} is a nested

sequence of nonvoid closed spheres with radii ek tending to zero. By the

Cantor intersection theorem, f)kep S(zk, sk) contains exactly one point,

say w. The fixed point set F is closed by [3] and the sequence {zk} from F

converges to w, so w £ F. Since \xn—zk\<ek¡4 for n^Nk, we have {xn}—>-w.

Q.E.D.
Note that in Theorem 2 the set C is not required to be bounded;

however, boundedness of C is needed in Theorem 1 to apply the Browder-

Kirk theorem.

In the preceding theorems, the fixed point of T to which M(xx, tn, T)

converges depends, in general, on the initial approximation xx as well

as the values of the /„. Also, M(xx, t„, T) need not converge to the fixed

point of Tnearest xx. The following example can be used to verify each of

these facts. Let X be the space R2 with the Euclidean norm and, with

(r, 6) denoting polar coordinates, let C={(r, 6):0SrSl, — trfiSOS

—jt¡A}. Define T: C->C by T[(r, 0)] = (r, -tt/2) for each point (r, 6) in C.

The set of fixed points of Tis the line segment F={(r, — n¡2):0SrSl}.
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On Condition I. If T: C-*C has a nonvoid fixed point set F, then T

will be said to satisfy Condition II provided there exists a real number

<x>0 such that |x— 7x|3:a • d(x, F) holds for all x £ C, where as before

d(x, F)=infzeF\x—z\. Clearly mappings which satisfy Condition II

also satisfy Condition I, and in some cases Condition II is easily verified.

In the example above, Condition II holds with a=l. If T rotates points of

the unit ball of R2 through an angle 77/2, then Condition II holds with

oc=V2.
Condition II is similar to, but less restrictive than, a requirement im-

posed by Outlaw in [10, Theorem 2]. Mappings satisfying Outlaw's

condition can have at most a single fixed point; his second theorem

follows as a special case of Theorem 2.

If T: C-+C satisfies either requirement (A) or (B) (see above) and has a

fixed point in C, then it is easily shown that T has a unique fixed point

[6], [12]. In [6, Theorem 2] Kannan proves under certain conditions that

for xx £ C, M(xx, I, T) converges to the fixed point of 7" if F satisfies (A).

We extend his result with

Theorem 3. Let C be a subset of a Banach space X and T a mapping of C

into C which satisfies either (A) or (B) and has a (unique) fixed point in C.

Then T satisfies Condition II. If C is closed and convex and X is uniformly

convex then for any xx e C, M(xx, tn, T) converges to the fixed point of T.

Proof. Assume T satisfies requirement (B) and let p be the unique

fixed point of T. Then for x £ C

\Tx - p\ = \Tx- Tp\ Sa\x- Tx\ +c\x- p\

and

\Tx-p\ ^ I \Tx - x\-\x- p\\^ \x - p\ - \x - Tx\.

Hence

a \x — Tx\ + c \x — p\ ^ \x — p\ — \x — Tx\,

so \x— Tx\>[(l— c)lil+a)]\x—p\. The constant (1—c)/(l+a) is positive

since 0<a, c<l. Thus Condition II holds. A similar argument applies if T

is a mapping of the type (A).

Since T is quasi-nonexpansive and satisfies Condition I, the second

assertion of the theorem follows directly from Theorem 2.    Q.E.D.

We now establish a relationship between mappings which satisfy

Condition I and those which are demicompact, beginning with

Lemma 1. Suppose C is a closed, bounded subset of a Banach space X

and T:C-+C has a nonempty fixed point set F in C. If I—T maps closed

bounded subsets of C onto closed subsets of X, then T satisfies Condition I

on C.
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Proof. Let M=sup{d(x, F):x £ C}. If M=0 then F=Cand Condition

I follows trivially. Suppose M>0; for 0<r<M define CT={x £ C:

d(x,F)^r} and f(r) = inf{\x—Tx\:x £ Cr}. Note that each set Cr is non-

empty, closed and bounded. We prove that for arbitrary r, 0<r<M,

for)>0.
By hypothesis, (I-T)Cr={x-Tx:x £ Cr} is closed. If d£(I-T)CT

then d = z—Tz for some z £ Cr, which implies z=Tz and thus z £ F. But

d(z, F)=gr>0, a contradiction. Therefore, 6 fi (I—T)Cr. Suppose now

that/(r)=0. Then there is a sequence {x„}çCr such that |x„ — 7x„|—>-0

and hence {xH—Txn}-*ê. But {xn— 7x„}s (/— T)Cr, a closed set. Thus we

obtain 6 £ (I— T)Cr, contradicting our statement above that 0 $ (I— T)CT.

Therefore,/(r)>0 for 0<r<M.

We extend the domain off to [0, oo) by defining/(0) = 0 and/(/•) =

sup{f(s):s<M} for r^.M. It is easy to verify that/so defined fulfills the

hypotheses of Condition I; in particular, \x—Tx\"^-f(d(x,F)) for each

x£C.   Q.E.D.
A consequence of Lemma 1 and Theorem 2 is

Corollary 1 (Browder and Petryshyn [2]). Let C be a closed,

convex subset of a uniformly convex Banach space X and T: C~^-C a non-

expansive mapping. For X£(0, 1) let TÀ be given by Tk=XI+(\—X)T.

(Notice that M(xx, l—X, T) = {Tnkxx}A If I—T maps closed bounded subsets

of C onto closed subsets ofX and if the set F of fixed points of T is nonempty,

then for any X£(0, 1) and every x in C the sequence {T\x} converges to a

member of F.

A mapping T:C->X of a subset C of a Banach space X is said to be

demicompact [11] provided whenever {rjçC is bounded and {xn—Txn}

converges then there is a subsequence {xn} which converges. If a mapping

Fis continuous as well as demicompact then, according to Opial [9, p. 41],

the mapping /— F maps closed bounded subsets of C onto closed subsets

of X. In particular, if T: C^>-C is nonexpansive and demicompact and has a

fixed point in C, it follows from Opial's result and Lemma 1 that T must

satisfy Condition I. Using a different approach, Groetsch [5] has estab-

lished the convergence of mean-value iterates of nonexpansive, demi-

compact mappings to a fixed point of the mapping.
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