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APPROXIMATING FIXED POINTS
OF NONEXPANSIVE MAPPINGS

H. F. SENTER AND W. G. DOTSON, JR.

ABSTRACT. A condition is given for nonexpansive mappings
which assures convergence of certain iterates to a fixed point of the
mapping in a uniformly convex Banach space. A relationship
between the given condition and the requirement of demicom-
pactness is established.

Introduction. Browder [1] and Kirk [7] have shown that a nonexpan-
sive mapping T which maps a closed, bounded, convex subset C of a uni-
formly convex Banach space into itself has a nonempty fixed point set
in C. In general, however, for arbitrary x € C the Picard iterates T"x
do not converge to a fixed point of T. It will be shown that if T satisfies
one additional condition, then an iterative process of the type introduced
by W. R. Mann [8] converges to a fixed point of 7. For nonexpansive
mappings 7" which have fixed points, this additional condition is weaker
than the requirement that 7" be demicompact.

Convergence to a fixed point. Let X be a Banach space with norm
|-] and C a convex subset of X. A self-mapping T of C is said to be
nonexpansive provided | Tx—Ty|<|x—y| holds for all x, y € C. A mapping
T:C—C with nonempty fixed point set F in C will be said to satisfy
Condition 1 if there is a nondecreasing function f:[0, c0)—[0, c0) with
f10)=0, f(r)>0 for re (0, ), such that |x—Tx|Zf(d(x, F)) for all
x € C, where d(x, F)=inf{|x—z|:z € F}.

Let P denote the set of positive integers. For x; € C, M(x,, t,,, T) is the
sequence {x,} defined by x,,,=(—1t)x,+1¢,Tx, where ¢, € [a, b] for
all neP and 0<a<b<I. This iterative process has been previously
investigated by Dotson in [4].

Our main result for nonexpansive mappings is the following:

THEOREM 1. Suppose X is a uniformly convex Banach space, C is a
closed, bounded, convex, nonempty subset of X, and T is a nonexpansive
mapping of C into C. Let F denote the fixed point set of T in C, and suppose
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T satisfies Condition 1. Then for any x, € C, M(xy, t,, T) converges to a
member of F.

Given that Fis nonempty (which in Theorem 1 is assured by the Browder-
Kirk theorem [1], [7]) the proof that M(x,, t,, T) converges to a fixed
point uses only the fact that 7 is nonexpansive about its fixed points
(see Theorem 2 below). Theorem 1 will follow immediately as a corollary
of Theorem 2. As in [3], a self-mapping T of C will be called quasi-
nonexpansive provided T has a fixed point in C and if pe C is a fixed
point of 7 then |[Tx—p|=|x—p] is true for all x € C. The class of quasi-
nonexpansive mappings includes continuous as well as discontinuous
mappings which are not nonexpansive. One can easily prove that T: C—~C
is quasi-nonexpansive if T has a fixed point in C and for x, y € C satisfies
either

(A) ITx — Tyl = Bllx —Tx| + |y —Tyll, 0=B=1/2,
or
(B) [ Tx — Ty| Salx —Tx|+ by — Tyl + clx — yl,

where a, b, c>0 and a+b+c=1.

Mappings which satisfy the requirement (A) or (B) have been recently
investigated by Kannan [6] and Reich [12] respectively.

For a uniformly convex Banach space X, Dotson [4] has shown that if
{w,} and {y,} are sequences in the closed unit ball of X and if {z,}=
{(I—=t)w,+1,y,} satisfies lim|z,|=1, where ¢, € [a, b] for 0<a<b<]1,
then lim|w,—y,|=0. This result will be used in the proof of

THEOREM 2. Suppose X is a uniformly convex Banach space, C is a
closed, convex subset of X and T is a quasi-nonexpansive mapping of C into
C. If T satisfies Condition 1, where F is the fixed point set of T in C, then
for arbitrary x, € C, M(xy, t,, T) converges to a member of F.

ProOF. If x, € F the result is trivial, so we assume x, € C~F. For
arbitrary z € F we have for n € P that |Tx,—z|<|x,—z| and so

Ixn+1 - Zl é (l - tn) |xn - ZI + t, ITxn - Zl é Ixn - ZI.

Thus, d(x,,;, F)<d(x,, F) for all neP. The sequence {d(x,, F)} is
nonincreasing and bounded below, so lim d(x,, F) exists. We now show
(indirectly) that this limit must be zero, and in turn, that {x,} converges
to a member of F.

Suppose lim d(x,, F)=b>0. Then for z,€ F, lim|x,—z,|=b"Z5>0.
Choose N>0 such that |x,—z,|=<2b" for n=N. If we let y,=
(Txn—zo)/lxn—zol and Myn'_—(xn—zo)/lxn_zol’ then Iynlél and |wn|=l
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for all n € P; and for n=N

|xn - Txnl > f(d(xm F)) > fﬁ’_) > 0.
Ixn - ZOI - |xn - ZOI =2~

Iwn —ynl =

Therefore, lim|w,—y,|#0. Moreover
lim [(1 — t)w, + 1,y = lim |x,; — z|/|x, — zo| = b'[b' = 1.

However, by the contrapositive of Dotson’s result [4] stated above, since
limlw,—y,|#0 then the existence of lim|(1—¢)w,+1,y,| implies
lim|(1—t,)w,+1,y,/7#1, a contradiction. Therefore, lim d(x,, F)=0.
We show that this implies {x,} converges to an element of F.

Since lim d(x,,, F)=0, given ¢>0 there exists N,>0 and z, € F such that
|xy,—z.|<e, which implies |x,—z|<e for all n=N,. Thus, if ¢=1/2
for k € P, then corresponding to each ¢, there is an N, >0 and a z, € F
such that |x,—z,|=Z¢,/4 for all nZ N,. We require N, =N, for all k € P.
We have for all k € P

|2e = Zial = |2 — x = Zil < &fd + &pa/d = 3g,./4.

Ny

+ XNesr
Let S(z, e)={x € X:|x—z|=¢} denote the closed sphere centered at z of
radius ¢. For x € S(z,,, €41) We have

|z — x| = |z, — Zpor + Zewr — X1 < 3e [4 + €441 < 26441 = &

k+1
That is, S(zp1, €1 S S(2y, &) for k € P. Thus, {S(z,, &)} is a nested
sequence of nonvoid closed spheres with radii ¢, tending to zero. By the
Cantor intersection theorem, (,.p S(z,, &) contains exactly one point,
say w. The fixed point set F is closed by [3] and the sequence {z,} from F
converges to w, so w € F. Since |x,—z,| <¢,/4 for n=N,, we have {x,}—>w.
Q.E.D.

Note that in Theorem 2 the set C is not required to be bounded;
however, boundedness of C is needed in Theorem 1 to apply the Browder-
Kirk theorem.

In the preceding theorems, the fixed point of T to which M(x,, t,, T)
converges depends, in general, on the initial approximation x, as well
as the values of the ¢,. Also, M(x,, t,, T) need not converge to the fixed
point of T nearest x,. The following example can be used to verify each of
these facts. Let X be the space R? with the Euclidean norm and, with
(r, 0) denoting polar coordinates, let C={(r,0):0=r=1, —7[2=0=
—m[4}. Define T:C—C by T[(r, 6)]=(r, —n/2) for each point (r, 6) in C.
The set of fixed points of T is the line segment F={(r, —m/2):0=r=1}.
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On Condition I. If T:C—C has a nonvoid fixed point set F, then T
will be said to satisfy Condition II provided there exists a real number
«>0 such that [x—Tx|=« - d(x, F) holds for all x € C, where as before
d(x, F)=inf, g|x—z|. Clearly mappings which satisfy Condition II
also satisfy Condition I, and in some cases Condition II is easily verified.
In the example above, Condition II holds with a=1. If T rotates points of
the unit ball of R? through an angle =/2, then Condition II holds with
a=./2.

C\c{ndition IT is similar to, but less restrictive than, a requirement im-
posed by Outlaw in [10, Theorem 2]. Mappings satisfying Outlaw’s
condition can have at most a single fixed point; his second theorem
follows as a special case of Theorem 2.

If T: C—C satisfies either requirement (A) or (B) (see above) and has a
fixed point in C, then it is easily shown that T has a unique fixed point
[6], [12]. In [6, Theorem 2] Kannan proves under certain conditions that
for x; € C, M(x,, %, T) converges to the fixed point of T if T satisfies (A).
We extend his result with

THEOREM 3. Let C be a subset of a Banach space X and T a mapping of C
into C which satisfies either (A) or (B) and has a (unique) fixed point in C.
Then T satisfies Condition I1. If C is closed and convex and X is uniformly
convex then for any x, € C, M(x,, t,, T) converges to the fixed point of T.

Proor. Assume T satisfies requirement (B) and let p be the unique
fixed point of T. Then for x € C

[Tx — pl =|Tx — Tp| S alx — Tx| + c|x — p|
and
|Tx — pl Z |I1Tx — x| — |x — pl| Z Ix — p| — |x — Tx|.
Hence
alx = Tx| +clx —pl = |x —pl — |x — Tx|,

so |x—Tx|Z[(1—c)/(1+a)]jx—p|. The constant (1 —c)/(1+a) is positive
since 0<a, c< 1. Thus Condition II holds. A similar argument applies if T
is a mapping of the type (A).

Since T is quasi-nonexpansive and satisfies Condition I, the second
assertion of the theorem follows directly from Theorem 2. Q.E.D.

We now establish a relationship between mappings which satisfy
Condition I and those which are demicompact, beginning with

LeMMA 1. Suppose C is a closed, bounded subset of a Banach space X
and T:C—C has a nonempty fixed point set F in C. If I—T maps closed
bounded subsets of C onto closed subsets of X, then T satisfies Condition 1
on C.
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ProoOF. Let M=sup{d(x, F):x € C}. If M=0 then F=C and Condition
I follows trivially. Suppose M >0; for 0<r<M define C,={xeC:
d(x, F)Zr} and f(r)=inf{|x—Tx|:x € C,}. Note that each set C, is non-
empty, closed and bounded. We prove that for arbitrary r, 0<r<M,
f(r)>0.

By hypothesis, (/—T)C,={x—Tx:xe€ C,} is closed. If § € (I—T)C,
then 6§=z— Tz for some z € C,, which implies z=T77 and thus z € F. But
d(z, F)Zr>0, a contradiction. Therefore, 6 ¢ (/I—T)C,. Suppose now
that f(r)=0. Then there is a sequence {x,}< C, such that |x,— Tx,|—>0
and hence {x,— Tx,}—0. But {x,—Tx,}<(I—T)C,, a closed set. Thus we
obtain 6 € (I—T)C,, contradicting our statement above that 0 ¢ (I—T)C,.
Therefore, f(r)>0 for 0<r<M.

We extend the domain of f to [0, o) by defining f(0)=0 and f(r)=
sup{f(s):s<M} for r=M. It is easy to verify that f so defined fulfills the
hypotheses of Condition I; in particular, |[x—Tx|Z f(d(x, F)) for each
xeC. Q.E.D.

A consequence of Lemma 1 and Theorem 2 is

COROLLARY 1 (BROWDER AND PETRYSHYN [2]). Let C be a closed,
convex subset of a uniformly convex Banach space X and T:C—C a non-
expansive mapping. For 2€(0,1) let T, be given by T,=iI4(1—N)T.
(Notice that M(x,, 1—A, T)={T3x,}.) If I— T maps closed bounded subsets
of C onto closed subsets of X and if the set F of fixed points of T is nonempty,
then for any A € (0, 1) and every x in C the sequence {T;x} converges to a
member of F.

A mapping T:C—X of a subset C of a Banach space X is said to be
demicompact [11] provided whenever {x,}< C is bounded and {x,—Tx,}
converges then there is a subsequence {x, } which converges. If a mapping
T is continuous as well as demicompact then, according to Opial [9, p. 41],
the mapping /— T maps closed bounded subsets of C onto closed subsets
of X. In particular, if T: C—C is nonexpansive and demicompact and has a
fixed point in C, it follows from Opial’s result and Lemma 1 that 7 must
satisfy Condition I. Using a different approach, Groetsch [5] has estab-
lished the convergence of mean-value iterates of nonexpansive, demi-
compact mappings to a fixed point of the mapping.
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