ON THE SERIAL COMPLETION OF DELETED SCHAUDER BASES BY DOMAIN ADJUSTMENT

BEN-AMI BRAUN

ABSTRACT. Given a Schauder basis in a Banach function space of a specified type, one can delete any finite number of elements of the basis and still preserve serial totality by making an arbitrarily small adjustment of the domain.

Let $\{\phi_n\}_{n=1}^{\infty}$ be a system of real valued functions finite almost everywhere and measurable on a set $G \subset [0, 1]$, mes. G > 0. Talalyan [2], [3] proved the following to be equivalent:

- (a) $\{\phi_n\}_{n=1}^{\infty}$ is total in measure on G, that is, for every measurable function f defined on G, there exists a sequence of finite linear combinations of functions of the system $\{\phi_n\}_{n=1}^{\infty}$ which converges in measure to f on G.
- (b) For each positive number ε , there is a measurable set S_{ε} whose measure exceeds $1-\varepsilon$, such that $\{\phi_n\}_{n=1}^{\infty}$ is total in $L^2(S_{\varepsilon})$.

We shall say that $\{\phi_k\}_{k=1}^{\infty}$ is serially total in some function space, if for any given function f in the space we can find a series $\sum_{k=1}^{\infty} a_k \phi_k$ which converges to f in the metric of the space. The result of this paper can be viewed as a first step in changing total into serially total.

Let L(E) be a Banach space of measurable functions on a measurable set $E \subset [a, b]$ with natural linear operations. As usual, identify functions equal almost everywhere. Postulate the following on L(E):

- (1) L(E) is contained in $L^1(E)$;
- (2) L(E) contains the function 1;
- (3) if $f \in L(E)$, and if for a measurable function g, $0 \le g(x) \le f(x)$ almost everywhere, then $g \in L(E)$;
- (4) if $f \in L(E)$ and χ_A is the characteristic function of the measurable set A, then $\|f\chi_A\| \equiv \|f\|_A$ goes to zero as |A| goes to zero, where |A| denotes the Lebesgue measure of A.

Example of spaces that satisfy (1)-(4) are the L^p spaces $1 \le p < \infty$ and the separable Orlicz spaces.

Received by the editors March 30, 1972.

AMS (MOS) subject classifications (1970). Primary 46B15, 46E30; Secondary 41A30. Key words and phrases. Schauder basis, completion, series representation.

THEOREM. Let $\{\phi_k\}_{k=1}^{\infty}$ be a normalized basis for L(E), then given any natural number N_0 and $\varepsilon > 0$, there exists a set $D = D(N_0, \varepsilon)$, contained in E and satisfying $|D| > |E| - \varepsilon$, such that $\{\phi_k\}_{k=N_0}^{\infty}$ is serially total in L(D).

We should note that by [1] $\{\phi_k\}_{k=N_0}^{\infty}$ is serially total in measure on E. We utilize a lemma from [1] as the main tool in the proof of the theorem.

LEMMA. Let $\{\phi_k\}_{k=1}^{\infty}$ be a normalized Schauder basis for L(E), g a measurable function finite almost everywhere on E. Then given $\varepsilon>0$ and a natural number N, there exists a set e_0 and real numbers b_{N+1}, \dots, b_m such that

$$\begin{aligned} e_0 &\subset E, \ and \ |e_0| < \varepsilon; \\ |b_k| < \varepsilon \quad for \ N+1 \leq k \leq m; \\ \left\| \sum_{k=N+1}^m b_k \phi_k - g \right\|_{(E \setminus e_0)} < \varepsilon; \\ \left\| \sum_{k=N+1}^s b_k \phi_k \right\|_e \leq \varepsilon + \|g\|_e \quad for \ all \ N+1 \leq s \leq m, \end{aligned}$$

and every measurable subset e of $E \setminus e_0$.

PROOF OF THEOREM. The required set D will be a certain infinite intersection. The individual factors of this intersection are inductively determined.

Choose a sequence of positive terms ε_n with the property

$$\sum_{n=1}^{\infty} \varepsilon_n = \varepsilon.$$

By virtue of the lemma we may choose a set D_1 whose complement E_1 has measure less than ε_1 , and a Φ -polynomial

$$P_{11} = \sum_{j=\nu(1,0)+1}^{\nu(1,1)} b_j \phi_j$$
 where $\nu(1,0) = N_0$

satisfying the following conditions:

(5)
$$|b_j| < \varepsilon_1$$
, for $\nu(1, 0) < j \le \nu(1, 1)$,

(6)
$$\|\phi_1 - P_{11}\|_{D_1} < \varepsilon_1,$$

(7)
$$\sup_{s \le v(1,1)} \left\| \sum_{j=v(1,0)+1}^{s} b_j \phi_j \right\|_{e} < \varepsilon_1 + \|\phi_1\|_{e}$$

for all measurable subsets e contained in D_1 .

Again applying the lemma twice in succession allows us to choose for

i=1, 2, sets D_{2i} with respective complements E_{2i} and Φ -polynomials

$$P_{2i} = \sum_{j=\nu(2,i-1)+1}^{\nu(2,i)} b_j \phi_j$$

with v(1, 1) < v(2, 0) < v(2, 1) < v(2, 2) such that

(8)
$$|E_{2i}| < \varepsilon_2/2 \text{ for } i = 1, 2;$$

(9)
$$|b_j| < \varepsilon_2 \text{ if } \nu(2,0) < j \le \nu(2,2);$$

(10)
$$\|(\phi_1 - P_{11}) - P_{21}\|_{D_{21}} < \varepsilon_2/2;$$

$$\|\phi_2 - P_{22}\|_{D_{22}} < \varepsilon_2/2;$$

(12)
$$\sup_{s \le v(2,1)} \left\| \sum_{j=v(2,0)+1}^{s} b_j \phi_j \right\|_{e} < \varepsilon_2 + \|\phi_1 - P_{11}\|_{e}$$

for all measurable subsets e of D_{21} ;

(13)
$$\sup_{s \le v(2,2)} \left\| \sum_{j=v(2,1)+1}^{s} b_j \phi_j \right\|_{c} < \varepsilon_2 + \|\phi_2\|_{e}$$

for all measurable subsets e of D_{22} .

Let $D_2^* = \bigcap_{i=1}^2 D_{2i}$ and $D_2 = D_1 \cap D_2^*$, then $|D_2| > |E| - \sum_{i=1}^2 \varepsilon_1$. By virtue of (12), (13), (6) and the definition of the set D_2 we obtain

(14)
$$\sup_{s \le \nu(2,k)} \left\| \sum_{j=\nu(2,k-1)+1}^{s} b_j \phi_j \right\|_{\varepsilon} \le \begin{cases} \varepsilon_2 + \varepsilon_1 & \text{if } k = 1; \\ \varepsilon_2 + 1 & \text{if } k = 2; \end{cases}$$

for all measurable subsets e of D_2 .

In the nth step we apply the lemma successively to the functions

(15)
$$\Psi_k = \phi_k - \sum_{j=k}^{n-1} P_{jk} \text{ with } k = 1, 2, \dots, n-1,$$

$$\Psi_n = \phi_n.$$

The lemma makes it possible to choose for $k=1, 2, \dots, n$, sets D_{nk} with respective complements E_{nk} and Φ -polynomials

(17)
$$P_{nk} = \sum_{i=v(n,k-1)+1}^{v(n,k)} b_i \phi_i$$

where $v(n-1, n-1) < v(n, 0) < v(n, 1) < \cdots < v(n, n)$ such that the following holds:

$$(18) |E_{nk}| < \varepsilon_n/n;$$

(19)
$$|b_j| < \varepsilon_n, \text{ for } \nu(n, 0) < j \le \nu(n, n);$$

$$\|\Psi_k - P_{nk}\|_{D_{nk}} < \varepsilon_n/n;$$

(21)
$$\sup_{s \leq v(n,k)} \left\| \sum_{j=v(n,k-1)+1}^{s} b_j \phi_j \right\|_e \leq \varepsilon_n + \|\Psi_k\|_e$$

for all measurable subsets e of D_{nk} . Let $D_n^* = \bigcap_{k=1}^n D_{nk}$ and $D_n = D_{n-1} \cap D_n^*$, then $|D_n| > |E| - \sum_{k=1}^n \varepsilon_k$. In analogous fashion to (14) of the second step we obtain in the nth step

(22)
$$\sup_{s \le v(n,k)} \left\| \sum_{j=v(n,k-1)+1}^{s} b_j \phi_j \right\|_{\epsilon} \le \begin{cases} \varepsilon_n + \varepsilon_{n-1} & \text{if } k < n; \\ \varepsilon_n + 1 & \text{if } k = n; \end{cases}$$

for all measurable subsets e of D_n . Continuing by inductive construction it is easy to see that (18)–(22) holds for each natural number n. Define $D = \bigcap_{n=1}^{\infty} D_n$, then $|D| \ge |E| - \sum_{k=1}^{\infty} \varepsilon_k \ge |E| - \varepsilon$.

Now we are ready to show that given any function f in L(D) we can find a series from $\{\phi_j: \nu(m,0) \leq j \leq \nu(m,m), m=1,2,\cdots\}$ which will converge to f in the L(D) norm. In fact, if $\sum_{k=1}^{\infty} a_k \phi_k$ is the Schauder basis expansion of f then $\sum_{j=1}^{\infty} \sum_{k=1}^{j} a_k P_{jk}$ converges to f in the L(D) norm.

Let $\delta > 0$ be given. Choose N_1 so that

(23)
$$\left\| \sum_{k=1}^{n} a_k \phi_k - f \right\|_{D} \le \left\| \sum_{k=1}^{n} a_k \phi_k - f \chi_D \right\| < \frac{\delta}{3} \text{ for all } n > N_1.$$

Setting $a = \sup_k |a_k|$, choose $N_2 > N_1$ so that $a \cdot \varepsilon_n < \delta/3$ for all $n > N_2$. By virtue of (20), (15) and the definition of D we obtain

(24)
$$\left\| \sum_{j=1}^{n} \sum_{k=1}^{j} a_k P_{jk} - \sum_{k=1}^{n} a_k \phi_k \right\|_D = \left\| \sum_{k=1}^{n} a_k \left(\sum_{j=k}^{n} P_{jk} - \phi_k \right) \right\|_D$$

$$\leq \sum_{k=1}^{n} \left\| \sum_{j=k}^{n} P_{jk} - \phi_k \right\|_D$$

$$\leq n \cdot a \cdot \varepsilon_n / n < \delta / 3.$$

Last, choose $N_3 > N_2$ so that

$$(25) |2 \cdot a_n| < \delta/3 \text{whenever } n > N_3.$$

By virtue of (23) and (24) we obtain

(26)
$$\left\| \sum_{j=1}^{n} \sum_{k=1}^{j} a_k P_{jk} - f \right\|_{D} < \frac{2\delta}{3}, \text{ for all } n > N_3.$$

Obviously

(27)
$$\left\| \sum_{j=1}^{n} \sum_{k=1}^{j} a_k P_{jk} + \sum_{k=1}^{n+1} a_k P_{n+1k} - f \right\|_D < \frac{2\delta}{3} \quad \text{for ail } n > N_3.$$

If we add in only part of the second sum; that is,

$$\sum_{k=1}^{m} a_k P_{n+1k} \quad \text{with } m < n+1$$

then it is easy to see from (20) that the basis elements ϕ_i , $i=1, 2, \dots, m$, will be approximated better than before, by $\varepsilon_{n+1}/(n+1)$ instead of by ε_n/n . Hence via the calculations in (24), and by (26) it is immediate that

(28)
$$\left\| \sum_{i=1}^{n} \sum_{k=1}^{j} a_k P_{jk} + \sum_{k=1}^{m} a_k P_{n+1k} - f \right\|_{D} < \frac{2\delta}{3}.$$

Finally, if we add to the summations in (28) only part of the Φ -polynomial $a_{m+1}P_{n+1,m+1}$, let us say

$$\sum_{j=\nu(n+1,m)+1}^{s} a_{m+1}b_{j}\phi_{j} \quad \text{where } \nu(n+1,m) < s < \nu(n+1,m+1)$$

then (22) and (25) in addition to (28) give us

$$\left\| \sum_{j=1}^{n} \sum_{k=1}^{j} a_k P_{jk} + \sum_{k=1}^{m} a_k P_{n+1 \, k} + \sum_{j=\nu(n+1, m)+1}^{s} a_{n+1} b_j \phi_j - f \right\|_{D} < \delta.$$

Thus, we obtain the desired series convergence. Furthermore, the coefficients of ϕ_i go to zero, since the a_n are bounded by a and the b_i go to zero.

BIBLIOGRAPHY

- 1. Ben-Ami Braun, An extension of a result by Talalyan on the representation of measurable functions by Schauder bases, Proc. Amer. Math. Soc. 34 (1972), 440-446. MR 45 #4138.
- 2. A. A. Talaljan, On the convergence almost everywhere of subsequences of partial sums of general orthogonal series, Izv. Akad. Nauk Armyan SSR Fiz.-Mat. Nauk 10 (1957), no. 3, 17-34. (Russian) MR 19, 742.
- 3. ——, The representations of measurable functions by series, Uspehi Mat. Nauk 15 (1960), no. 5 (95), 77-141=Russian Math. Surveys 15 (1960), no. 5, 75-136. MR 23 #A2704.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH FLORIDA, TAMPA, FLORIDA 33620