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ON (L?(4,), L*(A1))s.q
MICHAEL CWIKEL

ABSTRACT. The Lions-Peetre formula for (L?(4,), L*1(A41))g.,
valid for g=p(0), where 1/p(0)=(1—0)/p,+6/p,, is shown to
have no reasonable generalization for any g p(6).

Let B be a Banach space, and (X, 2, 4) a measure space. For | Sp=< o0,
L% (B) is defined as the Banach space of strongly measurable B-valued
functions f on X, for which | f(x)|p belongs to the corresponding L?
space L% of real valued functions. The subscript X is omitted where this
would not cause any ambiguity. We also take X to denote the measure
space obtained by a cartesian product of X with itself, equipped with
product measure, and R, to denote (0, ) equipped with Lebesgue
measure.

Let (A4,, 4,, /) be an interpolation triple. It was shown in [3] that
for py, py in [1, o] and 0<6<1,

(LP(Ayp), L*(AD)g,q = L ((Aos A1)s.o)

provided that g=p(6), where 1/p(6)=(1—0)/py+06/p,. The problem of
identifying (L”(A,), L (A4,))s.q for other values of g was left open. In
the special case where Ay=A,;, (L™(A,), L*(41))s.a=L(p(0), 9)(4,), the
space of strongly measurable A4,-valued functions f such that [ f(x)] 4,
belongs to L(p(0), ). (For definitions and details concerning the Lorentz
spaces L(p,q), see [1], [2], [4].) This example, as well as the Lions-
Peetre formula, suggests that, given p,, p;, 6 and g, it might be possible
to find a normed space 4, A< A,+ 4,, such that the membership of f(x)
in (L?(A4,), L**(4,))s., is determined solely by the behaviour of the real
valued function || f(x)ll 4.

What is such a space A likely to be? A rather natural guess would
be A=(A,, A1)s.¢» and indeed, if the measure space consists of a single
atom of finite measure,

(L?(Ao), L*(A1))s,e = (Aos A1)eo.q
= {f(x), strongly (4, + A,) measurable: || f(x)|l 4o, 4115, < ©}-
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From this it follows that in fact (4,, 4,)s, is the only choice for 4 open
to us (unless we envisage an 4 depending on the structure of the under-
lying measure space).

In effect we are asking whether there exists a representation in the style
of the Lions-Peetre formula:

(L*(4o), L*(A1))e.o

1
M = {f(x), strongly (4 + Ay)-measurable: | f(x)l 4o, 45« € S}

where S is some class of real valued functions on X, depending on some
or maybe all of p,, p;, 0,9, X, Z, u, 4y, 4;, and /. We note in passing
that for S=L(p(6), ¢q) the formula (1) is true in each of the three special
cases, g=p(0), Ag=A, (provided p,7 p,) and X=single atom. Nevertheless,
as we shall show here, (1) is false for at least one choice of (4o, 4;, )
and (X, Z, ¢) and for “nearly” every choice of parameters, p,, p;, 0, q.

THEOREM. For each choice of parameters 6 € (0, 1), po, p1, g € [1, ©]
with py#p, and q#p(0) there exist (Ao, Ay, ) and (X, Z, p) and two
strongly (A,+ A,) measurable functions f and g on X such that,

(1 Fe(LP(Ag), L(A))s.0r & F (L7(Ao), L"(A1))p00
(ii) 1f G 0, 4909.0 = 180,409, for all x € X.

Proor. We take A,=L%, A,=L% and X=R,. Since p,#p,
(4o + A1)0.0=LX(P(6), q) and

(Lpo(AO), Lpl(Al))O,q = (Lr)‘}z, L?z’)o,q = LX’(p(0)9 Q)

Let Lx(p,q)(Lx(p,q)) be the space of functions f(x,y), measurable
on X% such that || f(x, )z .0 € Lx(p,q) as a function of x.

LemMA. If p#q,
LR?;(P’ q) # LR+(p’ ‘I)(LR+(P, q)))

and neither space contains the other.

The Lemma is proved in a later section. Take p=p(8). Let g(x, y) be a
function on X2 which belongs to L x(p, ¢)(Lx(p, q)) but not to L x:(p, 9).
As a function of x, G(x)=|g(x, *)|L(»..) must belong to Ly(p,q). LetE
be a subset of X such that |xgllz .o=1 and let S, ) =G(x)xg(y)-
Then we have that

f(x,y)e Lxx(p,q) and g(x,y)¢ Lx*p, 9),



288 MICHAEL CWIKEL [June

but also that
If(x, ')"Lx(ﬁ.a) = | g(x, ')”Lx(p.q) for all x.

This completes the proof.

REMARK. It follows immediately that a formula of form (1) can never
be generally true if g7p(6) when p, and p; are unequal. However one
might still hope that in the case p,=p,, where the above set of counter-
examples is inapplicable, there exists a generalization of the Lions-
Peetre formula of form (1) for g#p(0). Again we show that this is not so.
Put p=p,=p;=p(6). Then if A=A, (1) is true with S=L% for all values
of 6 and g. So unless we were to admit an S which is allowed to vary its
form depending on whether 4, and 4, are equal or not, the only possible
version of (1) would be with S=L%.

In factif g=<p,

(L*(A4o), L*(A1))o.c = L7((Ao> Ar)e.o) -
and the reverse inclusion holds for g= p. These are readily proved using

the integral version of Minkowski’s inequality, and the observation
that f(x) € (LP(4,), LP(4,))s., if and only if

f“wt_aq(fo("f (x)” dﬂ) P,

[Here we adopt the standard notation

K(t,f(x)) = K(1,f(x), 49, A}) = inf )(Ilglle + thll.4)

g+h=f(2
for each x.]

To show that these inclusions are not, in general, equalities consider
for example the case g=oco. Here

2 L7((Ag, A1)o, ) < (L(Ao), L7(41))p, -
Let X=R,, and Ay=Lp_, A;=L® . Then K(t,f)=[5f*(s)ds (see
[1, p. 184]). Let f(x, )=x"*""'21 4u/n( - ). Then
K(t, f(x) = tx~®9? for0 <t < x
= x"107  for x!'/? <t < oo.

S0 11 fll (. 4,04,, =SUPe >0 t0K(t, f)=x"1/7 ¢ L?.
However

& ©
f K(t, f(x))? du = f x0dx 4 1 J x~#9 dx
X 0 ?

t

= (1/6 + 1/(1 — 6))*,
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$O
1/p
sup ([ K(sP du) < o and £ (LA, LA
t>0 X
proving that (2) is strict. We could equally well have used

8(x, ) = e 0,5()

on (—oo, o) instead of f(x,-) on R,. [g(x, ')"(Ao-An)o.oo=1 for all x,
and as we have already noted | f(x, *)ll(4,.4,), , =x""/*. Thus we may
also remark that

(L”(A), L*(A4)))s, o & L(q> )((Aos A1)e, )

for all ¢ and r.

ProoF OoF THE LEMMA. We show that neither of the spaces A=
Lg:(p,q) and B=Lg, (p,q)(Lg, (p,q) contains the other if ps£q. It is
convenient to use the natural quasinorms for the spaces 4 and B (see

21, [4)),
© 1/q
Ilfll,’§=llfll;“,a=( f t"”"lf*(t)"dt) . g<w,

= sup 1'/7f¥(1), q= oo,
t>0

where f*(t) is the nonincreasing rearrangement on R, of the function
fix,y) on R
£ = NG 300

where here | - ||}, denotes the usual Lg, (p,q) quasinorm. It is first
evaluated for f(x, y) as a function of y for each x, and subsequently
for the resulting function of x.

(i) Consider g= 0. g(x, y)=1/(xy)!/? is in B but not 4. For the reverse
noninclusion, define

fGx,») =0 for y > 2x~%exp(—1/x?),
= exp(1/px?®) for 0 £ y < 2x3exp(—1/x%).

I£1% = sup £2£*(1)
t>0

= sup (f32x‘3 exp(—1/x?) dx)l/pexp(l/ ps?)

$>0 (1}
= sup (exp(—1/59)" exp(1/ps*) = 1.
But ) .
1£Cx, I3 = [2x7% exp(—1/x*)]"? exp(1/px®)
= [2x7°]V2,
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Therefore
115 = sup xMe 2557 = co.
z>0

(if) g< . Each counterexample function will be constructed similarly
to f above. Take a nonnegative function e(x) and a nonnegative non-
increasing continuous function F(x) and define

fx, ) =0 fory > e(x),
= F(x) for0 =<y =< e(x).
Then, if E(x)=[35 e(t) dt,

oz = ([ a)
- ( L ® B0 1F (x) e(x) dx)l/q

/e

and
e(x) 1/q
If(x, ')";‘.a = F(x)(f fa/r-1 dl)
0

= (p/q)"/%e(x)""F().

In each of the following cases e and F will be chosen to ensure also that
e(x)'/?F(x) is nonincreasing and continuous. Then

o 1/
1713 = elay( [ T recor dx)
0
First suppose p<gq. Put

e(x) = exp x - exp(exp x)
so

E(x) = exp(exp x) — exp 1.
Put
F(x) = 1/e(x)"'>.

1715 = f "G (I dx
< f " lexp(—01* dx < o.
0

But | f¥=(p/q) f¢ x4/ dx=c0. Thus A¢ B.
Next put e(x)=1/(x+1), so

E(x) =log(x + 1) and F(x) = min{l, [log(x + 1)]—1/1»}_

If1% éf l[lOg(x + DI (x 4 1) dx = oo,
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But
115" ~ (pla) f " x> log(x + DI*(x + 17? dx < @
e—1
proving B4 4.

It remains to consider the case p>q. Again take e(x)=1/(x+1) so
E(x)=log(x+1). Let

F(x) = [log(x + DI+ for0<x<e-— 1,
= [log(x + D]™¥*™*/¢ forx = e—1,

with 0<&<min[g/p, 1 —q/p).

e—.

If15° = \ 1[108(3‘ + DI"log(x + DI™***(x + 1) dx
+J‘°° [log(x 4+ DI*[log(x + DI™*~(x + 1)~ dx

1 [
=J ritedr +f r 17t dr < oo.
0 1

IF15 = (pl9) J; :(x + DY log(x 4+ DIT"*(x + 1)™? dx

= Glo) [ T dr = .
1

Therefore A¢ B.
Finally put e(x)=exp x, so E(x)=exp x—1. Let

F(x) = exp(—x/p) on [0, 1],
= exp(—x/p)x~?7*/¢ on [1, c0),

where 0<e<1—g/p. Note that, as always e(x)'/?F(x) is nonincreasing.
0
I1F1% éf (exp x — 1)¥*~1x~4/7~¢(exp x)~*/*+1 dx
1

o0
Zf X"t dx = 0.
1

But
1
15 = (p/q)ﬁ x%*~ exp(—qx/p)exp(qx/p) dx
+ (p/q)fwxq/p—lx—q/p-a dx
1

< o,
showing that B¢ 4 and completing the proof of the Lemma.
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REMARK. In fact the Lions-Peetre formula for (L”°(A4,), L”*(4,))s, 0
is true for p, and p, in the extended range (0, o] (see [4]). Similarly
the Theorem and Lemma presented above remain valid for p,, p;, g €
(0, oo].
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