ON $(L^{p_0}(A_0), L^{p_1}(A_1))_{\theta,q}$

MICHAEL CWIKEL

ABSTRACT. The Lions-Peetre formula for $(L^{p_0}(A_0), L^{p_1}(A_1))_{\theta,q}$ valid for $q=p(\theta)$, where $1/p(\theta)=(1-\theta)/p_0+\theta/p_1$, is shown to have no reasonable generalization for any $q\neq p(\theta)$.

Let B be a Banach space, and (X, Σ, μ) a measure space. For $1 \le p \le \infty$, $L_X^p(B)$ is defined as the Banach space of strongly measurable B-valued functions f on X, for which $||f(x)||_B$ belongs to the corresponding L^p space L_X^p of real valued functions. The subscript X is omitted where this would not cause any ambiguity. We also take X^2 to denote the measure space obtained by a cartesian product of X with itself, equipped with product measure, and R_+ to denote $(0, \infty)$ equipped with Lebesgue measure.

Let (A_0, A_1, \mathcal{A}) be an interpolation triple. It was shown in [3] that for p_0, p_1 in $[1, \infty]$ and $0 < \theta < 1$,

$$(L^{p_0}(A_0), L^{p_1}(A_1))_{\theta,q} = L^q((A_0, A_1)_{\theta,q})$$

provided that $q=p(\theta)$, where $1/p(\theta)=(1-\theta)/p_0+\theta/p_1$. The problem of identifying $(L^{p_0}(A_0), L^{p_1}(A_1))_{\theta,q}$ for other values of q was left open. In the special case where $A_0=A_1$, $(L^{p_0}(A_0), L^{p_1}(A_1))_{\theta,q}=L(p(\theta), q)(A_0)$, the space of strongly measurable A_0 -valued functions f such that $||f(x)||_{A_0}$ belongs to $L(p(\theta), q)$. (For definitions and details concerning the Lorentz spaces L(p,q), see [1], [2], [4].) This example, as well as the Lions-Peetre formula, suggests that, given p_0 , p_1 , θ and q, it might be possible to find a normed space A, $A \subseteq A_0 + A_1$, such that the membership of f(x) in $(L^{p_0}(A_0), L^{p_1}(A_1))_{\theta,q}$ is determined solely by the behaviour of the real valued function $||f(x)||_A$.

What is such a space A likely to be? A rather natural guess would be $A = (A_0, A_1)_{\theta,q}$, and indeed, if the measure space consists of a single atom of finite measure,

$$(L^{p_0}(A_0), L^{p_1}(A_1))_{\theta,q} = (A_0, A_1)_{\theta,q}$$

$$= \{ f(x), \text{ strongly } (A_0 + A_1) \text{ measurable: } ||f(x)||_{(A_0, A_1)_{\theta,q}} < \infty \}.$$

Received by the editors July 9, 1973.

AMS (MOS) subject classifications (1970). Primary 46E30, 46E35, 46E40.

Key words and phrases. Interpolation spaces, vector-valued L^p space, L(p,q) space.

From this it follows that in fact $(A_0, A_1)_{\theta,q}$ is the only choice for A open to us (unless we envisage an A depending on the structure of the underlying measure space).

In effect we are asking whether there exists a representation in the style of the Lions-Peetre formula:

(1)
$$\begin{aligned} (L^{p_0}(A_0), L^{p_1}(A_1))_{\theta, q} \\ &= \{f(x), \, \text{strongly} \, (A_0 + A_1) - \text{measurable} : \|f(x)\|_{(A_0, A_1)_{\theta, q}} \in S \} \end{aligned}$$

where S is some class of real valued functions on X, depending on some or maybe all of p_0 , p_1 , θ , q, X, Σ , μ , A_0 , A_1 , and \mathscr{A} . We note in passing that for $S=L(p(\theta),q)$ the formula (1) is true in each of the three special cases, $q=p(\theta)$, $A_0=A_1$ (provided $p_0\neq p_1$) and X= single atom. Nevertheless, as we shall show here, (1) is false for at least one choice of (A_0,A_1,\mathscr{A}) and (X,Σ,μ) and for "nearly" every choice of parameters, p_0,p_1,θ,q .

THEOREM. For each choice of parameters $\theta \in (0, 1)$, $p_0, p_1, q \in [1, \infty]$ with $p_0 \neq p_1$ and $q \neq p(\theta)$ there exist (A_0, A_1, \mathcal{A}) and (X, Σ, μ) and two strongly $(A_0 + A_1)$ measurable functions f and g on X such that,

(i)
$$f \in (L^{p_0}(A_0), L^{p_1}(A_1))_{\theta, \alpha}, \quad g \notin (L^{p_0}(A_0), L^{p_1}(A_1))_{\theta, \alpha}$$

(ii)
$$||f(x)||_{(A_0,A_1)_{\theta,\theta}} = ||g(x)||_{(A_0,A_1)_{\theta,\theta}} \text{ for all } x \in X.$$

PROOF. We take $A_0=L_X^{p_0}$, $A_1=L_X^{p_1}$ and $X=R_+$. Since $p_0\neq p_1$, $(A_0+A_1)_{\theta,q}=L_X(p(\theta),q)$ and

$$(L^{p_0}(A_0), L^{p_1}(A_1))_{\theta,q} = (L^{p_0}_{X^2}, L^{p_1}_{X^2})_{\theta,q} = L_{X^2}(p(\theta), q).$$

Let $L_X(p,q)(L_X(p,q))$ be the space of functions f(x,y), measurable on X^2 such that $||f(x,\cdot)||_{L_X(p,q)} \in L_X(p,q)$ as a function of x.

LEMMA. If $p \neq q$,

$$L_{R_{+}^{2}}(p, q) \neq L_{R_{+}}(p, q)(L_{R_{+}}(p, q)),$$

and neither space contains the other.

The Lemma is proved in a later section. Take $p=p(\theta)$. Let g(x,y) be a function on X^2 which belongs to $L_X(p,q)(L_X(p,q))$ but not to $L_{X^2}(p,q)$. As a function of x, $G(x)=\|g(x,\cdot)\|_{L_X(p,q)}$ must belong to $L_X(p,q)$. Let E be a subset of X such that $\|\chi_E\|_{L_X(p,q)}=1$ and let $f(x,y)=G(x)\chi_E(y)$. Then we have that

$$f(x, y) \in L_{X^2}(p, q)$$
 and $g(x, y) \notin L_{X^2}(p, q)$,

but also that

$$||f(x,\cdot)||_{L_{\mathbf{r}}(p,q)} = ||g(x,\cdot)||_{L_{\mathbf{r}}(p,q)}$$
 for all x .

This completes the proof.

REMARK. It follows immediately that a formula of form (1) can never be generally true if $q \neq p(\theta)$ when p_0 and p_1 are unequal. However one might still hope that in the case $p_0 = p_1$, where the above set of counter-examples is inapplicable, there exists a generalization of the Lions-Peetre formula of form (1) for $q \neq p(\theta)$. Again we show that this is not so. Put $p = p_0 = p_1 = p(\theta)$. Then if $A_0 = A_1$, (1) is true with $S = L_X^p$ for all values of θ and q. So unless we were to admit an S which is allowed to vary its form depending on whether A_0 and A_1 are equal or not, the only possible version of (1) would be with $S = L_X^p$.

In fact if $q \leq p$,

$$(L^p(A_0), L^p(A_1))_{\theta, q} \subseteq L^p((A_0, A_1)_{\theta, q})$$

and the reverse inclusion holds for $q \ge p$. These are readily proved using the integral version of Minkowski's inequality, and the observation that $f(x) \in (L^p(A_0), L^p(A_1))_{\theta,q}$ if and only if

$$\int_0^\infty t^{-\theta q} \left(\int_X K(t, f(x))^p \ d\mu \right)^{q/p} \frac{dt}{t} < \infty.$$

[Here we adopt the standard notation

$$K(t, f(x)) = K(t, f(x), A_0, A_1) = \inf_{a+b-t(x)} (\|g\|_{A_0} + t \|h\|_{A_1})$$

for each x.]

To show that these inclusions are not, in general, equalities consider for example the case $q=\infty$. Here

(2)
$$L^{p}((A_0, A_1)_{\theta, \infty}) \subseteq (L^{p}(A_0), L^{p}(A_1))_{\theta, \infty}.$$

Let $X=R_+$, and $A_0=L_{R_+}^1$, $A_1=L_{R_+}^{\infty}$. Then $K(t,f)=\int_0^t f^*(s) ds$ (see [1, p. 184]). Let $f(x,\cdot)=x^{-(2-\theta)/p}\chi_{(0,x^{1/p}]}(\cdot)$. Then

$$K(t, f(x)) = tx^{-(2-\theta)/p}$$
 for $0 < t \le x^{1/p}$,
= $x^{-(1-\theta)/p}$ for $x^{1/p} \le t < \infty$.

So $||f||_{(A_0,A_1)_{\theta,\infty}} = \sup_{t>0} t^{-\theta} K(t,f) = x^{-1/p} \notin L^p$. However

$$\int_X K(t, f(x))^p d\mu = \int_0^{t^p} x^{-(1-\theta)} dx + t^p \int_{t^p}^\infty x^{-(2-\theta)} dx$$
$$= (1/\theta + 1/(1-\theta))t^{\theta p}.$$

so

$$\sup_{t>0} t^{-\theta} \left(\int_X K(t, f(x))^p \, d\mu \right)^{1/p} < \infty \quad \text{and} \quad f \in (L^p(A_0), L^p(A_1))_{\theta, \infty},$$

proving that (2) is strict. We could equally well have used

$$g(x, \cdot) = e^{-x(1-\theta)} \chi_{(0,e^x]}(\cdot)$$

on $(-\infty, \infty)$ instead of $f(x, \cdot)$ on R_+ . $\|g(x, \cdot)\|_{(A_0, A_1)_{\theta, \infty}} = 1$ for all x, and as we have already noted $\|f(x, \cdot)\|_{(A_0, A_1)_{\theta, \infty}} = x^{-1/p}$. Thus we may also remark that

$$(L^{p}(A_{0}), L^{p}(A_{1}))_{\theta,\infty} \neq L(q, r)((A_{0}, A_{1})_{\theta,\infty})$$

for all q and r.

PROOF OF THE LEMMA. We show that neither of the spaces $A = L_{R_{+}^{2}}(p,q)$ and $B = L_{R_{+}}(p,q)(L_{R_{+}}(p,q))$ contains the other if $p \neq q$. It is convenient to use the natural quasinorms for the spaces A and B (see [2], [4]),

$$||f||_{A}^{*} = ||f||_{p,q}^{*} = \left(\int_{0}^{\infty} t^{q/p-1} f^{*}(t)^{q} dt\right)^{1/q}, \qquad q < \infty,$$

$$= \sup_{t>0} t^{1/p} f^{*}(t), \qquad q = \infty,$$

where $f^*(t)$ is the nonincreasing rearrangement on R_+ of the function f(x, y) on R_+^2 .

$$||f||_B^* = ||(||f(x,\cdot)||_{p,q}^*)||_{p,q}^*,$$

where here $\|\cdot\|_{p,q}^*$ denotes the usual $L_{R_+}(p,q)$ quasinorm. It is first evaluated for f(x,y) as a function of y for each x, and subsequently for the resulting function of x.

(i) Consider $q = \infty$. $g(x, y) = 1/(xy)^{1/p}$ is in B but not A. For the reverse noninclusion, define

$$f(x, y) = 0 for y > 2x^{-3} \exp(-1/x^2),$$

$$= \exp(1/px^2) for 0 \le y \le 2x^{-3} \exp(-1/x^2).$$

$$||f||_A^* = \sup_{t>0} t^{1/p} f^*(t)$$

$$= \sup_{s>0} \left(\int_0^s 2x^{-3} \exp(-1/x^2) dx \right)^{1/p} \exp(1/ps^2)$$

$$= \sup_{s>0} (\exp(-1/s^2))^{1/p} \exp(1/ps^2) = 1.$$

But

$$||f(x, \cdot)||_{p,\infty}^* = [2x^{-3} \exp(-1/x^2)]^{1/p} \exp(1/px^2)$$
$$= [2x^{-3}]^{1/p}.$$

Therefore

$$||f||_B^* = \sup_{x>0} x^{1/p} [2x^{-3}]^{1/p} = \infty.$$

(ii) $q < \infty$. Each counterexample function will be constructed similarly to f above. Take a nonnegative function e(x) and a nonnegative non-increasing continuous function F(x) and define

$$f(x, y) = 0 for y > e(x),$$

= $F(x)$ for $0 \le y \le e(x)$.

Then, if $E(x) = \int_0^x e(t) dt$,

$$||f||_{A}^{*} = \left(\int_{0}^{\infty} t^{q/p-1} f^{*}(t)^{q} dt\right)^{1/q}$$
$$= \left(\int_{0}^{\infty} E(x)^{q/p-1} F(x)^{q} e(x) dx\right)^{1/q}$$

and

$$||f(x,\cdot)||_{p,q}^* = F(x) \left(\int_0^{c(x)} t^{q/p-1} dt \right)^{1/q}$$
$$= (p/q)^{1/q} e(x)^{1/p} F(x).$$

In each of the following cases e and F will be chosen to ensure also that $e(x)^{1/p}F(x)$ is nonincreasing and continuous. Then

$$||f||_B^* = (p/q)^{1/q} \left(\int_0^\infty x^{q/p-1} F(x)^q e(x)^{q/p} \ dx \right)^{1/q}.$$

First suppose p < q. Put

$$e(x) = \exp x \cdot \exp(\exp x)$$

so

$$E(x) = \exp(\exp x) - \exp 1.$$

Put

$$F(x) = 1/e(x)^{1/p}.$$

$$\|f\|_A^{*q} = \int_0^\infty [E(x)/e(x)]^{q/p-1} dx$$

$$\leq \int_0^\infty [\exp(-x)]^{q/p-1} dx < \infty.$$

But $||f||_B^{*q} = (p/q) \int_0^\infty x^{q/p-1} dx = \infty$. Thus $A \not\subset B$.

Next put e(x)=1/(x+1), so

$$E(x) = \log(x+1) \quad \text{and} \quad F(x) = \min\{1, [\log(x+1)]^{-1/p}\}.$$

$$\|f\|_A^{*q} \ge \int_{e-1}^{\infty} [\log(x+1)]^{q/p-1-q/p} (x+1)^{-1} dx = \infty.$$

But

$$||f||_B^{*q} \sim (p/q) \int_{e-1}^{\infty} x^{q/p-1} [\log(x+1)]^{-q/p} (x+1)^{-q/p} dx < \infty$$

proving $B \not\subset A$.

It remains to consider the case p>q. Again take e(x)=1/(x+1) so $E(x)=\log(x+1)$. Let

$$F(x) = [\log(x+1)]^{-1/p + \epsilon/q} \text{ for } 0 \le x \le e - 1,$$

= $[\log(x+1)]^{-1/p - \epsilon/q} \text{ for } x \ge e - 1,$

with $0 < \varepsilon < \min[q/p, 1 - q/p]$.

$$||f||_{\mathcal{A}}^{*q} = \int_{0}^{e-1} [\log(x+1)]^{q/p-1} [\log(x+1)]^{-q/p+\varepsilon} (x+1)^{-1} dx$$

$$+ \int_{e-1}^{\infty} [\log(x+1)]^{q/p-1} [\log(x+1)]^{-q/p-\varepsilon} (x+1)^{-1} dx$$

$$= \int_{0}^{1} r^{-1+\varepsilon} dr + \int_{1}^{\infty} r^{-1-\varepsilon} dr < \infty.$$

$$||f||_{r}^{*q} \ge (p/q) \int_{0}^{\infty} (x+1)^{q/p-1} [\log(x+1)]^{-q/p-\varepsilon} (x+1)^{-q/p} dx$$

$$||f||_B^{*q} \ge (p/q) \int_{e^{-1}}^{\infty} (x+1)^{q/p-1} [\log(x+1)]^{-q/p-\varepsilon} (x+1)^{-q/p} dx$$

$$= (p/q) \int_1^{\infty} r^{-q/p-\varepsilon} dr = \infty.$$

Therefore A
otin B.

Finally put $e(x) = \exp x$, so $E(x) = \exp x - 1$. Let

$$F(x) = \exp(-x/p) \quad \text{on [0, 1],}$$

= $\exp(-x/p)x^{-1/p-\epsilon/q} \quad \text{on [1, \infty]},$

where $0 < \varepsilon < 1 - q/p$. Note that, as always $e(x)^{1/p}F(x)$ is nonincreasing.

$$||f||_A^{*q} \ge \int_1^\infty (\exp x - 1)^{q/p - 1} x^{-q/p - \varepsilon} (\exp x)^{-q/p + 1} dx$$
$$\ge \int_1^\infty x^{-q/p - \varepsilon} dx = \infty.$$

But

$$||f||_{B}^{*q} = (p/q) \int_{0}^{1} x^{q/p-1} \exp(-qx/p) \exp(qx/p) dx$$

$$+ (p/q) \int_{1}^{\infty} x^{q/p-1} x^{-q/p-\epsilon} dx$$

$$< \infty,$$

showing that B
otin A and completing the proof of the Lemma.

REMARK. In fact the Lions-Peetre formula for $(L^{p_0}(A_0), L^{p_1}(A_1))_{\theta, p(\theta)}$ is true for p_0 and p_1 in the extended range $(0, \infty]$ (see [4]). Similarly the Theorem and Lemma presented above remain valid for $p_0, p_1, q \in (0, \infty]$.

ACKNOWLEDGEMENT. I would like to thank Dr. Yoram Sagher for his helpful comments and constant interest.

REFERENCES

- 1. P. L. Butzer and H. Berens, Semi-groups of operators and approximation, Die Grundlehren der math. Wissenschaften, Band 145, Springer-Verlag, New York, 1967. MR 37 #5588.
- 2. R. A. Hunt, On L(p,q) spaces, Enseignement Math. (2) 12 (1966), 249-276. MR 36 #6921.
- 3. J. L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Inst. Hautes Etudes Sci. Publ. Math. No. 19 (1964), 5-68. MR 29 #2627.
 - 4. Y. Sagher, Interpolation of r-Banach spaces, Studia Math. 41 (1972), 45-70.

DEPARTMENT OF THEORETICAL MATHEMATICS, WEIZMANN INSTITUTE OF SCIENCE, REHOVOT, ISRAEL

Current address: Mathématique (Bât. 425), Université de Paris-Sud, Orsay 91405, France