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FIXED POINT THEOREMS IN  UNIFORMLY  CONVEX
BANACH SPACES

MICHAEL  EDELSTEIN1

Abstract. The notion of an asymptotic center is used to

prove a number of results concerning the existence of fixed points

under certain selfmappings of a closed and bounded convex

subset of a uniformly convex Banach space.

1. Introduction. In this paper we shall assume that A' is a Banach

space with positive modulus of convexity ô(e) (i.e. A'is uniformly convex),

where

0(e) = inf{l -IWx+yW: \\x\\ S 1, \\y\\ S I, \\x - y\\ ^ e}

(0<eS 2).

Let {un:n=l, 2, • • •} be a bounded sequence in a closed convex subset C

of X. As in [2] we define

(1) rm(x) = sup{\\un - x\\ :n ^ m}

and denote by cm the unique point in C with the property that

(2) rm(cm) = inf{rm(x):x 6 C}.

It was shown in [2] that a point c, called the asymptotic center of {«„}

with respect to C, exists such that cm~*c as m-^-co.

Some basic properties of the asymptotic center are collected in §2

of the present paper. These are then used to obtain a much stronger

version of a fixed point theorem proved first in [2]. Next, a fixed point

theorem for a countable family of commuting mappings, more general

than nonexpansive ones, is proved. A special feature of our results is that,

given an orbit of an arbitrary point in C, the location of the fixed point

is known a priori (as it coincides with the asymptotic center of that orbit)

and it has certain uniqueness properties.
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2. Preliminaries.

2.1. We shall make use of the mapping r of A'into the reals defined by

(3) rix) = inf{rmix):m = 1, 2, • • •}.

The mapping r as well as the rm (m=l, 2, • • •) are continuous on all of

X. This follows easily from the fact that /-m(x)^-r(x) as m—»-co and

(4) \rjx) - rjx')\ S \\x - x'\\        (x, x'£ X:m = 1,2, ■ ■ ■).

Also, rmiym)^riy) asym-+y; for

kmOm) - riy)\ S \irmiym) - rjy)) + irjy) - rij))\

= \\ym-y\\ + \rm(y) - riy)\.

2.2. For the asymptotic center c of {un} with respect to C we have

(5) x £ C ~ {c} => r((x + c)l2) < rix).

Indeed, since cn-^»c [2, Theorem 1] there is an N such that, for

n^.N, \\cn—x\\>i\\c—x\\. By uniform convexity and the definition of

rn and cn we thus have for k^n^N

IK -(x + C„)/2|| S rnix)il - «5(1* - c||/2P))

where p is a positive constant (e.g. p=rx(x)+l). Thus

rniix + cn)¡2) S rnix)il - èi\\x - c\\l2p))

and therefore

riix + c)/2) S r(x)(l - á(||* - c\\¡2P)) < rix)

as claimed.

2.3. From (5) we conclude easily that

(6) x £ C ~ {c} => ric) < rix).

For, clearly, rmicm)Srmiy). Thus ric)Sriy) for all y £ C. If, however,

contrary to (6), r(c)=r(x) then with j = (x+c)/2 we would have, by

(5), ric)>riy).

2.4. If for some n0, n^n0=>\\un—z||i=||«„—c\\ then z = c. Indeed if

ml^.n0 the above implies that rmiz)Srmic) and, therefore, r(z)^r(c)

which, by (6) is only possible if z = c.

2.5. In the special case when X is a Hubert space then c e cl co{un},

the closed convex hull of {un}.

Proof. If v e X is not in cl co{un} then there is a nearest point c' to

/j in cl co{//„}. The hyperplane {x e X:(x—c , c —1»)=0} separates v

from cl co{un} and we may clearly assume that Re(un—c',c' — v)>0



1974] FIXED   POINT  THEOREMS  IN   BANACH  SPACES 371

(h=1, 2, • • •)• Hence

li«„ - »II2 = IK - c'll2 + Ik' - v\\2 + 2 Re(un - c', c' - v)

> ||//„ - c'll2        (//= 1,2, ■••)•

It follows from 2.4 above that v cannot coincide with the asymptotic

center c.

3. Fixed point theorems. A well-known theorem due to Browder

[1], Göhde [3] and, in a somewhat stronger form, to Kirk [4] states

that every nonexpansive mapping of a closed and bounded convex set,

in a uniformly convex Banach space, into itself has a fixed point. The

next theorem, while assuming substantially less on the mapping, proves

the existence of a fixed point having a preassigned location.

Theorem 1. Let f: C^-C be a mapping of a closed convex subset C

of a uniformly convex Banach space into itself and let {/"(x):/z=l, 2, • • •}

be a bounded sequence of iterates of some x £ C having the asymptotic

center c with respect to C. If an N exists such that

C) \\f"(x) -f(c)\\ S |/-»(*) - c\\        in > N)

thenfoc) = c.

Proof.    Let c'=foc). Then

||/"(x) - e'« = |/»(*) -foc)\\ S |/-»(x) -c\\,       n>N.

Hence rn(c')Srn_x(c)  (n>N) and,  therefore,  r(c')Sric).  By  (6) this

can only happen when c=c , i.e. foc) = c.

3.1. Remarks. (1) The above theorem is stronger than Theorem 2

of [2] in that condition (7) requires less than its counterpart there which

requires that the same inequality be satisfied not only for c but for all

points v of some neighborhood V of c.

(2) A mapping f:C->-C has a fixed point if the following condition is

satisfied:

For all x,y £ C there is an N = N(x,y) such that

(8) ||/"(x) -f(y)\\ S !/-»(*) - y\        (« > N).

Indeed, given an arbitrary xeC, choose y = c, the asymptotic center

of {/"(x)}. Then foc) = c.
(Note that in the corresponding statement in [2] the misprint occurs

involving the replacement offoy) and y byf"(y) and /n_1(j) respectively.)

3.2. If (7) is replaced by

(9) [[fix) -f'"ic)\\ S ||/»-'(x) - e|        (// > N)
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where m is a fixed positive integer then the argument used in the proof

of Theorem I yields the fact that/m(c) = c i.e. c is a periodic point. The

proof of the following theorem is based in part on this observation.

Theorem 2. Let C and f be as in Theorem 1 and suppose that for each

x £ C there is an 7V=A/(x) and m=m(x) such that, whenever c = cix) is

the asymptotic center of{fnix)} and c $ {/"(x):«> N},

(10) Wfoix) -/'"(c)|| S Wfo'Hx) - c\\        in > N)

with strict inequality in the case when fn~1ix)^c.

Then, for each x e C,foc) = c (=c(x)).

Proof. As observed before, if x £ C and c = cix), fmic) = c. Suppose

y=c^foc) so that m> I. Let N'=N(y), m'=m(y)and c' = c(y). Since, again

fm'(c') = c' we obtain from (10) Ífk(y)—c'\<W*-l—c'\ (n>N') showing

that \\fN+kiy) — c'\\ decreases with increasing k. On the other hand

¡l/-v'(y) - ci = \\fo"+miy) - c'\\ < \\fN'+m~\y) - c'll

which is impossible. Thus c=foc) proving the theorem.

3.3. In the case of nonexpansive mappings the asymptotic center c

of {/"(x)} for an arbitrary x in C is next shown to be the fixed point off

which is closest to {/"(x)://=0, 1. • • •}.

Proposition 2. Let f: C—>C be a nonexpansive mapping of the closed

and bounded convex set C into itself. If x e C and c is the asymptotic center

of{fnix):n=0, 1, • • •} then

ric) = inf{||/"(x) - c||:n = 0, 1, • • •} S inf{||/"(x) - f|:n = 0, 1, • • •}

for each fixed point f off.

Proof. From /(£) = £ it follows that \\fn+1ix)-Ç\\S\\fnix)-Ç\\

implying that rf,(f)=||/"(x)-f || and i-(i) = inf{||/"0)-f || :n = 0, 1, • • •}.
The conclusion now follows directly from (6).

4. Fixed points common to certain families of mappings. In this

section we first prove the existence of a common fixed point to a sequence

of commuting mappings satisfying conditions considerably weaker

than nonexpansiveness. This is accomplished by producing a sequence of

asymptotic centers {c<m)} and showing that its asymptotic center has the

desired property. In Hubert space such a fixed point has a nearest point

property analogous to that stated in Proposition 1 for a single mapping.

Finally Browder's theorem [1] on the existence of a common fixed point

for a family of commuting nonexpansive mappings is shown to hold for

the wider class satisfying condition (8).
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Theorem 3. Let C be a closed and bounded convex set in a uniformly

convex Banach space and {fn:n=0, 1, • ■ ■} a sequence of commuting

mappings of C into itself. Let c(1) be the asymptotic center of {fl(x)}

for some x=c(0) g C and, recursively, let c(n) be the asymptotic center of

{/™-i(c<n_1))}- Let c be the asymptotic center of {c<n):n=0, I, • • •} and

suppose that

(11)    IIA(cu,)-A(c)|| ^||c(i)-cl|        il^lk>k;k = 0, 1, •••)

ll/"(c<í>) -fÁca+1,)\\ S ll/rV") - c,i+1,||

(   } (n ^ Nil, k); I, k = 0, I,--)
and

WfJ?-i(cU-l)) -A(c(i))|| S \\fo_i(cU-l)) - c(i)||

(13) in ^ Nil, k); I, k= 1,2, ■■■).

Then foic) = c for all k=0, I,---. ■

Proof.    It suffices to show that for all l>k, k = 0, 1, • • • ,

(14) /,.(c«>) = e«>.

Indeed, if this is true then by (11)

lku) -/»(c)! = UÁcm) -fkic)\\ < ||C,¡) - C||

for l^lk>k and k=0, 1, • • • . By 2.4, then, fkic) = c. To prove (14)

note that/^(c(*+1,)=c<Ä+1) by Theorem 1 as a consequence of (12). Assuming

then that/t(c<¡-1)) = c(í-1> for l-l>k we get from (13)

ll/r_1(cü-1)) -A(c(i,)|| = \\fkfUcu-v) -A(c,!,)||

= ll/z-iic"-1') - cU)||        in ^ Nil, k))

implying, as before, that/A.(cU)) = c(').

Proposition 3. Let X be a Hilbert space and {fo:n=0, 1, • • •} a

sequence of commuting nonexpansive mappings of a closed and bounded

convex subset CcJ into itself Let {c(n)} and c be as in Theorem 3. If

f is any common fixed point of the fos then

inf{||c(n) - c\\:n = 0, 1, ■ • ■} S inf{\\cM - f||:n =0, 1, • • ■}.

Proof. It follows from 2.5 that \\c^n+^-^\\S\\c^-i\\, n=0, 1, • • •.

For

l/A«1"?) -/Ä01 = lk(?i) - III        (« = 0, 1, • • • ; k = 1, 2, • • •)

and, therefore c(n+1», being in cl co{/*(c(n>):Â: = l, 2, ■ ■ •}, is in the closed
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ball BÜ, ||c(n) —HI). Hence the conclusion of the proposition follows in

the same manner as that of Proposition 2.

Theorem 4. Let {fo:a£A} be a family of commuting continuous

mappings of a closed and bounded convex set C (/'« a uniformly convex

Banach space X) into itself and suppose that for each a e A and x, y e C

there is an Nix,y; a) such that for //>A'(x, y; a)

(15) \\fna+\x)-fa(y)\\ S Wflix) - y\\.

Then there is a f e C such that/„(£)=£ (a £ A).

Proof. Let Fa be the set of fixed points of fo. We then have to show

that f) {Fa:a £ A}^0 ■ A standard, and often used, argument shows

that the commuting property implies that the Fa have the finite inter-

section property. Thus it suffices to show that each Fa is weakly compact.

In view of the reflexivity of X it suffices then to show that each Fa is a

nonempty closed and convex subset of C. From 3.1(2) we know that

Fa¿¿0 iaeA). Let then y, z eFa and u = Xy + il-X)z with 0<A<1.

Choose /z>max(/V(j», u; a), Niz, u; a)). Then

\\y -fa(u)\\ = \\ra+\y) -fa(u)\\ s |j/;o») - u|| = ||y»-u||

and, similarly, \\z—fniu)\\S\\z—u\\. This, however, in any strictly convex

Banach space is only possible when /0(w)=w i.e. u £ Fa. Closedness of

each Fa is obvious.
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