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PROVING KNESER'S THEOREM  FOR FINITE

GROUPS  BY  ANOTHER  e-TRANSFORM*

R. a. lee

Abstract. Although neither the result nor the e-transforma-

tion is new, a new order for the successive transformations is

prescribed. From this follow some interesting properties which in

turn imply the result.

Let A, B and C be subsets of a finite abelian group G, with a, b and c

the respective elements. Suppose further that A+B=C.

Definition. Let Ä={x:x+B<^C}. We say A is full whenever A=Ä.

Notice that A c A and A+B=C.

Definition. Let AC={x:x+C<=C}. It is obvious that OeAC,

C+ACc C, £\A <= AC (in fact AA=AC if A is full). Also C+S<= C implies
that S<= AC. Hence AC+AC=AC, so that AC is a subgroup of G. We

now use the usual Dyson e-transform. H. B. Mann's e-transform would

serve equally well with only the obvious modifications in the proof, and

indeed the proof was originally done using that transform.

For e in A, a full set, and 0 e B another full set,

A -*■ A' = A u (R + e),

B-*B' **,B n (A - ej,

C->C = A' + B'.

Also let

A* = {a:aeA',a$A},

B* = {b:beB,b$B'}.

We have the following usual properties:

Po-C'cC,

Px.B*+e = A*,

P2. \A\ + \B\ = \A'\ + \B'\,
P3. 0 e B'.
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For any b' such that b'+A'^C, we clearly have b' + A<=C and b' +

(j5+e)cC, which implies, since A and B are full, that b' is in both B

and A — e. Thus b' is in R' showing that

P4. B' is full.

Let H=C. Since R' is full, H=B'; so that B' + H=B'<=A*-e. This
implies

P5. e+R' + //c:^.

Theorem.    |/4| + |R|^|C| + |AC|.

Lemma 1.    For any a in A such that a + B + H<£ C

\Ania + H)\ + \C\ S \C\.

Proof. By hypothesis, there is an element b of B so that a+b + H<t C.

Since C' + H<= C and C'<=-C, C must be disjoint from the coset a+b+H.

The set [Ar>ia + H)] + b is contained in this coset and also in C. Hence C

has at least \[A<~\ia+H)] + b\ = \A nia+H)\ more elements than C has.

We may inductively assume the theorem to be true for any Ax, Bx

and Cx such that AX+BX = CX and IRjKIRI. Assuming for now that e

can be chosen so that |R'|<|R| we clearly have iA' + H)+B' = C; so by

the inductive assumption:

(1) \A' + H\ + \B'\ S |C'| + \H\.

Lemma 2.    For any ae A such that a + H^ A,

\A\ +|5|<|C| + \A* cMa + H)\.

Proof. If a+B + H were contained in C, then a+H would be con-

tained in A, since A is full. This is, however, not the case so it follows that

a + B+H<t C. The inequality of Lemma 1 thus holds and adding this to

inequality (1) and the following three easy relations yield the lemma

after massive cancellation:

\A\ + \B\ = \A'\ + \B'\,

\A' O ia + H)\ = \A r\(a + H)\ + \A* n (a + H)\,

\H\ + \A'\ S \A' n ia + H)\ + \A' + H\.

Let the images of A, B and C under the transformation by d e A be the

sets A'd, B'd, C'd respectively, with difference sets A* and B*.

Unless A + B^A, there must be a din A with d+B^A. Thus B* is not

empty. Choose e in A so that B* is not empty, but minimal in the sense

that no nonempty B* is properly contained in it. This means that if B*<=

B* then either B* = B* or B*= 0. As before, we call A'e, B'e, A*, and B*

respectively A', B', A* and B*.
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By P3 and P6, e+H^A so we can transform by any e+h, where h e H.

Let

K={h:heH,B*e+h=0}.

Lemma 3.    For any a* in A*, ia*+H) nA=a*+K.

Proof. By P5, e + H+B'<=A, so that no b' in B' could even be removed

by a transformation under e+h. Hence, B*+h^B*. Thus by the minimal

choice of e, we have either B*+h=0 or B*+h=B*. If h is in A" then B*+h =

0, so that A*+h=0 and a*+h eB+e+h^A'e+h=A. If h is not in K,

B*e+h=B*, so that by Plt A*+h=e+h+B*+h=e+h+B* =h+A*. Therefore

a*+h is in A*+h, a set which is disjoint from A. This shows that a*+h

is in A if and only if h is in K, proving the lemma.

Lemma 4.    For any a in A, \ia + H)r\A*\S\AK\.

This is trivial if ia+H) C\A* is empty, so assume it is nonempty. For

any a* and at in ia+H)C\A*, Lemma 3 implies ia+H) C\A=a*+K=

at + K. Thus K+iat-at)^K, so that

((a + H) n A) - Ha + H) n A*) ç AAT.

Moreover.

|(a + H) n /1*| = |((a + H) O ^*) - ö*|

^ |((a + //) n ,4*) - ((a + 7/) n A*)\ S \AK\,

which proves the lemma.

Proof of the Theorem. If B is empty, so is C; making AC=G, and

the theorem trivially follows. We may thus assume B is nonempty and

moreover that 0 is an element of B by taking translates of B and C if

necessary. We may also assume that A and B are full by replacing A by Ä

and then B by B, since this only increases the left-hand side of the inequality.

If B+A^A, then B^AA=AC. Since OeR, we have A a C and hence

\A\ + \B\S\C\ + \AC\.
If B+A<£ A, e may be chosen so as to make B* minimal as before.

The proof now divides into three cases.

Case I.    For every a in A, a+H<^A.

In this case A + H<=-A so that H<=AA=AC. Hence

\A\ + \B\ = \A'\ + \B'\ S \C'\ + \H\ S \C\ + \AC\

follows from P2, (1), P0 and the last containment.

Case II.    There is an a in A with a+H$ A and ia+H)r\ A* is empty.

In this case the theorem follows immediately from Lemma 2.

Case III. For every a in A, either a + H^A or ia+H)r¡A* is non-

empty. Moreover, for some a in A, a+H<£A.
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In this case we can show A+AK<=A. For any a in A, ifa+H<=A, then

K is contained in the subgroup H, hence so is AA^ and thus a+AK<=A.

If a+H^-A, then there is an a* in A* r\ia+H). By Lemma 3,

a + AK cr ia + H) n ^ + AK = a* + A- + AK = a* + K <= A,

which proves the assertion.

This implies that AK<= AA = AC, so that by Lemma 4

(2) \ia + H)n A*\ S \AC\.

There is some a in A with a + H<£A, so that Lemma 2 together with (2)

now imply the theorem.

This statement of Kneser's theorem suggests the following conjectures

for sets of nonnegative integers.

Let A+B=C. Let H{n) = {x:c e C, x+cSn implies x + c e C}; then

.   Cim) + H{n)im)         .   Aim) + R(m)
min- _^ mm-.
man m +  1 man m +  1

Furthermore, it seems that H(n) may be replaced by

/<"» = {x:c e C, c S n implies x + ceC}.

Either of these conjectures implies both Mann's theorem and Kneser's

theorem for sets of integers.
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