AN ANNULAR FUNCTION WHICH IS THE SUM OF TWO NORMAL FUNCTIONS

PETER LAPPAN

ABSTRACT. It is known that a nonconstant normal function cannot have a Koebe value. An example is presented of an annular function which is the sum of two normal holomorphic functions. This example shows that a sum of two normal functions can result in a nonconstant function which has the Koebe value ∞ .

- 1. Let D denote the unit disc and C the unit circle in the complex plane. A function f meromorphic in D is said to be a normal function if the family of functions $\{f(S(z)): S \in \mathcal{S}\}\$ is a normal family, where \mathcal{S} is the collection of all conformal mappings of D onto itself. Let N denote the set of positive integers and let Z denote the set of all integers. A function f which is meromorphic in D is said to have the Koebe value α if there exists a sequence of Jordan arcs $\{J_n\}$ in D such that
- (i) there exist distinct radii R_1 and R_2 of D such that, for each $n \in N$ the arc J_n meets both R_1 and R_2 ;
 - (ii) if $m_n = \inf\{|z| : z \in J_n\}$, then $m_n \to 1$ as $n \to \infty$; and
- (iii) if α is finite and if $u_n = \sup\{|f(z) \alpha| : z \in J_n\}$ then $u_n \to 0$ as $n \to \infty$; while if $\alpha = \infty$ and if $v_n = \inf\{|f(z)| : z \in J_n\}$, then $v_n \to \infty$ as $n \to \infty$.

A function f holomorphic in D is called an *annular* function if there exists a sequence of Jordan curves $\{J_n\}$ in D such that for each $n \in N$ the curve J_n is in the interior of J_{n+1} and conditions (ii) and (iii) are satisfied with $\alpha = \infty$.

It has been proved by Bagemihl and Seidel [1, Theorem 1, p. 10] that a nonconstant normal meromorphic function cannot have a Koebe value, either finite or infinite. The author [2, Theorem 5, p. 191] has shown that a sum of two normal functions need not result in a normal function. Further, since the Nevanlinna characteristic function T(r) for a normal function satisfies $T(r)=O(\log(1/(1-r))$, the sum of two normal holomorphic functions must result in a function which is either a constant or is in Mac Lane's class A (see [4, pp. 43–44]), and such a function cannot have a finite Koebe value. We prove here that a sum of two normal homomorphic functions actually can have ∞ as a Koebe value in the strongest possible sense.

Received by the editors February 5, 1973 and, in revised form, September 17, 1973. AMS (MOS) subject classifications (1970). Primary 30A74, 30A58; Secondary 30A72, 30A76.

Key words and phrases. Normal function, annular function, Koebe value, harmonic measure.

[@] American Mathematical Society 1974

2. If Γ is a crosscut of D with $0 \notin \Gamma$ and if w is a point of C we say that Γ separates 0 from w if the component of $D - \Gamma$ which contains 0 does not have w as a boundary point. The following lemma is basic.

LEMMA. Let h be a function holomorphic in D. If for each point $w \in C$ and each $n \in N$ there exists a crosscut $\bigwedge (w, n)$ such that $|h(z)| \ge n$ for each $z \in \bigwedge (w, n)$ and $\bigwedge (w, n)$ separates 0 from w, then h is an annular function.

PROOF. For each $n \in N$ let D_n be the component of $\{z \in D: |h(z)| < n\}$ containing the origin. (It is possible that $D_n = \emptyset$ for a finite number of n's.) Let w be any point of C. For each $n \in N$, $\bigwedge (w, n) \cap D_n = \emptyset$ so that, if K_n denotes the boundary of D_n we have that $w \notin K_n$. Let n_0 be the least positive integer n for which $D_n \neq \emptyset$ and set $J_n = K_{n_0}$ for $n \le n_0$ and $J_n = K_n$ for $n > n_0$. Then J_n is a Jordan curve, $|h(z)| \ge n$ for $z \in J_n$, and $C \cap J_n = \emptyset$. Thus h is an annular function.

THEOREM. There exist two normal holomorphic functions f and g in D such that the sum h=f+g is an annular function. Further, g can be chosen to be a function with positive real part.

The proof of this theorem involves many detailed considerations, but the idea is basically to choose two normal holomorphic functions f and g such that the sum h satisfies the hypotheses of the Lemma. We note that, by renumbering the crosscuts $\bigwedge (w, n)$, if necessary, we can replace the condition that $|h(z)| \ge n$ on $\bigwedge (w, n)$ by the more general condition that for each fixed $w \in C$ we have

(1)
$$\lim_{n\to\infty} (\inf\{|h(z)| : z \in \bigwedge (w, n)\}) = \infty.$$

Let M(z) denote the elliptic modular function in D. Since M(z) omits the values 0, 1, and ∞ in D, we can take $\log M(z)$ and $\log \log M(z)$ to be holomorphic in D by assigning an appropriate value to the origin. Further, since both $\log M(z)$ and $\log \log M(z)$ omit a countable set of values, both are normal functions. We shall be concerned with the real part of the logarithm function, and we use the notation $\operatorname{Re}(\log z) = \ln |z|$. Let A_1 , A_2 , A_3 , and A_4 be the subsets of C defined by

 $A_1 = \{w \in C : M(z) \text{ has an asymptotic value either } 0 \text{ or } \infty \text{ at } w\},\$ $A_2 = \{w \in C : \log M(z) \text{ has the asymptotic value } 0 \text{ at } w\},\$ $A_3 = \{w \in C : \text{ for each } n \in N \text{ there exists a crosscut}$ $\land (w, n) \text{ of } D \text{ which separates } 0 \text{ from } w \text{ and such}$ $\text{ that } \ln |\log M(z)| > \ln n\pi \text{ for } z \in \land (w, n)\},\$

and

$$A_4 = C - (A_1 \cup A_2 \cup A_3).$$

We may assume, without loss of generality, that $1 \in A_2$. We note that both A_1 and A_2 are countable sets. Since the components of the set of z defined by Arg $M(z)=k\pi$, $k \in N$, are all crosscuts of D which are arcs of circles orthogonal to C, and since the radial projection of these components onto C consists of all but a subset of C of measure zero, it follows that A_3 has measure 2π so that A_4 has measure zero (see [3, p. 123] for a more detailed account of this situation).

We claim that $A_1 \subset A_3$. If $w \in A_1$, then for each $n \in Z$ there exists a crosscut $\alpha(w, n)$ of D such that $\operatorname{Arg} M(z) = n\pi$ for $z \in \alpha(w, n)$ and $\alpha(w, n)$ is an arc of a circle orthogonal to C at w. For each $n \in N$, let G_n be the component of $D - (\alpha(w, n) \cup \alpha(w, -n))$ having both $\alpha(w, n)$ and $\alpha(w, -n)$ as boundary arcs of G_n . Then $|\ln|M(z)| \to \infty$ as $z \to w$ from within G_n . Thus, by taking an appropriate crosscut of G_n , and combining this crosscut with appropriate subarcs of $\alpha(w, n)$ and $\alpha(w, -n)$ in the obvious manner, we obtain a crosscut $\bigwedge (w, n)$ of D which separates 0 from w and is such that $\ln|\log M(z)| > \ln n\pi$ for $z \in \bigwedge (w, n)$. Since the process can be done for each $n \in N$, we have that $w \in A_3$.

Now, for each $n \in N$, let E_n be the component of $\{z \in D : \ln | \log M(z)| < \ln n\pi \}$ which contains the origin. (It is possible that $E_n = \emptyset$ for a finite number of n.) If B_n is the collection of all points of C which are accessible boundary points of E_n , then B_n is a closed subset of C (see [3, Lemma, p. 121]). Clearly, for each $n \in N$, $B_n \cap A_3 = \emptyset$. It is possible that $A_2 \cap B_n \neq \emptyset$ for some n, but we claim that the set $B'_n = B_n - A_2$ is a closed set for each $n \in N$. For if $w \in A_2$, then for each $n \in Z$ there exists a crosscut $\mathcal{B}(w, n)$ of D such that $\mathcal{B}(w, n)$ has one endpoint at w, $\mathcal{B}(w, n)$ is an arc of a circle orthogonal to C at w, and $Arg \log M(z) = n\pi$ for $z \in \mathcal{B}(w, n)$. Thus, for each $n \in N$ and $z \in \mathcal{B}(w, n) \cup \mathcal{B}(w, -n)$ we have the $\ln |\log M(z)| > \ln n\pi$ so that if $w \in B_n \cap A_2$, then w is an isolated point of B_n . It follows that B'_n is a closed set for each $n \in N$. It should be further noted that for $w \in A_2$, $n \in Z$, the endpoint of $\mathcal{B}(w, n)$ other than w is a point of A_1 , and hence is not a point of $B'_{[n]}$.

If $w \in A_2$, $n \in N$, and if H_n is the component of $D - (\mathcal{B}(w, n) \cup \mathcal{B}(w, -n))$ having both $\mathcal{B}(w, n)$ and $\mathcal{B}(w, -n)$ as boundary arcs, then

$$\ln |\log M(z)| \to -\infty$$

as $z \rightarrow w$ from within H_n . By taking an appropriate crosscut of H_n and combining this with appropriate subarcs of $\mathcal{B}(w, n)$ and $\mathcal{B}(w, -n)$ in the obvious manner, we obtain a crosscut $\bigwedge (w, n)$ of D which separates 0 from w and which has both its endpoints in A_1 such that $|\log \log M(z)| > \ln n\pi$ for $z \in \bigwedge (w, n)$.

Since A_2 is a countable set, let $A_2 = \{w_1, w_2, w_3, \dots, w_n, \dots\}$ and

let

$$P_n = \bigcup_{j=1}^n \left(\bigcup_{k=1}^\infty \bigwedge (w_j, k) \right) \cup \{w_1, w_2, w_3, \cdots, w_n\},$$

and let

$$Q_n = P_n \cup \{z \in D : |z| \le 1 - 1/n\}.$$

Then Q_n is a compact subset in the closure of D, B'_n is a compact subset of C, and $Q_n \cap B'_n = \emptyset$. Let δ_n denote the distance between Q_n and B'_n , let $\delta_n(\theta)$ denote the distance from $e^{i\theta}$ to Q_n , and let $I_n = \{\theta \in (0, 2\pi) : \delta_n(\theta) > \delta_n/2\}$. We note that

$$\int_{I_n} d\theta/\delta_n(\theta) < \infty.$$

We will make repeated use of the following general principle. If Q is a compact subset in the closure of D and if A is an arc of C where

$$A = \{e^{i\theta}: \theta_1 < \theta < \theta_2\}$$

such that $Q \cap A = \emptyset$, then for $z \in Q$ we have

(2)
$$\log \frac{e^{i\theta_1} - z}{e^{i\theta_2} - z} = \int_{\theta_2}^{\theta_1} \frac{ie^{i\theta}}{e^{i\theta} - z} d\theta$$

where the logarithm is taken with imaginary part between 0 and 2π for $z \in Q$. From (2), it follows that

(3)
$$\left|\log \frac{e^{i\theta_1} - z}{e^{i\theta_2} - z}\right| \leq \int_{\theta_1}^{\theta_2} \frac{d\theta}{|e^{i\theta} - z|} = \int_{\theta_1}^{\theta_2} d\theta/\delta(\theta),$$

where $\delta(\theta)$ denotes the distance from $e^{i\theta}$ to Q.

Returning to the sets Q_n and B'_n , $n \in N$, and setting $S_n = \{\theta \in (0, 2\pi): e^{i\theta} \in B'_n\}$ —recall that $w = 1 \in A_2$ and hence is not in B'_n —then $S_n \subset I_n$ and S_n is a compact set with measure zero since $B'_n \subset A_4$. Hence, for each $n \in N$ there exist a finite number of disjoint open intervals (a(n, j), b(n, j)), $1 \le j \le m_n$, such that

$$S_n \subset \bigcup_{j=1}^m (a(n,j), b(n,j)) \subset I_n,$$

(4)
$$\sum_{i=1}^{m_n} \int_{a(n,i)}^{b(n,i)} d\theta / \delta_n(\theta) < (1/2)^{n+1}$$

(5)
$$\sum_{j=1}^{m_n} (b(n,j) - a(n,j)) < (1/2)^{n+1},$$

and such that none of the points $e^{ia(n,j)}$ or $e^{ib(n,j)}$ lies in A_2 . By (3) and (4)

we have that, for $n \in \mathbb{N}$, $z \in \mathbb{Q}_n$,

(6)
$$\sum_{i=1}^{m_n} \left| \log \frac{e^{ia(n,j)} - z}{e^{ib(n,j)} - z} \right| < (1/2)^{n+1}.$$

Now let

$$g_{n,j}(z) = (i/\pi)\log\frac{e^{ia(n,j)} - z}{e^{ib(n,j)} - z} + (1/2)(b(n,j) - a(n,j)).$$

Then $g_{n,j}(z)$ has the property that its real part is the harmonic measure of the arc $T_{n,j} = \{e^{i\theta} : a(n,j) < \theta < b(n,j)\}$. It follows that Re $g_{n,j}(z) > 0$ for all $z \in D$, and Re $g_{n,j}(z) \rightarrow 1$ as z approaches any point of $T_{n,j}$ from within D. We define

(7)
$$g(z) = \sum_{n=1}^{\infty} \sum_{j=1}^{m_n} g_{n,j}(z).$$

By (5), (6), and the fact that $D \subset \bigcup Q_n$, we have that g(z) is a function holomorphic in D, and g(z) has positive real part in D with Re $g(z) \to +\infty$ as z approaches any point of A_4 , since any point of A_4 is in all but a finite number of the sets B'_n . Further, for $z \in Q_n$, by (5), (6), and (7) we have that

$$|g(z)| \le 1 + \sup_{z \in Q_n} \sum_{k=1}^{n-1} \sum_{j=1}^{m_n} |g_{k,j}(z)|$$

where the right side is a finite sum and is thus a fixed number for each fixed n. It follows that if $w \in A_2$, then $w = w_q$ for some natural number q so that $w = w_q \in Q_n$ for $n \ge q$ and this yields that $|\log \log M(z) + g(z)| \to \infty$ as $z \rightarrow w$ along $\bigcup_{k=1}^{\infty} \bigwedge (w, k)$. Since g(z) has positive real part, for $z \in A_3$ we have that $|\log \log M(z) + g(z)| \to \infty$ as $z \to w$ along $\bigcup_{k=1}^{\infty} \bigwedge (w, k)$. It remains to obtain the same relationship for $w \in A_4$. However, we note that if $X = D - \{z \in D : |\log M(z)| < \frac{1}{2}\}$, then each point of A_4 is an accessible boundary point of X, and further, for each point $w \in A_4$ and each $n \in N$ there exists a crosscut $\bigwedge (w, n)$ of D such that $\bigwedge (w, n) \subset X \cap \{z \in D : z \in D : z \in D : z \in D \}$ |z-w| < 1/n. (The region X is simply D with some nearly circular regions deleted, where each of the regions deleted has only one point of contact with C and each such point of contact is a point of A_2 .) Each such $\bigwedge (w, n)$ separates 0 from w. But $\ln |\log M(z)| > \ln(\frac{1}{2})$ for $z \in X$, and hence, since Re $g(z) \rightarrow +\infty$ as $z \rightarrow w$ we have that $|\log \log M(z) + g(z)| \rightarrow \infty$ as $z \rightarrow w$ along $\bigcup_{k=1}^{\infty} \wedge (w, k)$. Thus (1) is established for each $w \in C$ and, by the second sentence following the statement of the Theorem, together with the Lemma, the Theorem is proved with $f(z) = \log \log M(z)$ and g(z) as defined in (7).

We remark that, since g is a function with positive real part it is a function of bounded type, so that the main burden of making h an annular

function falls on f. For if $\{J_n\}$ is the sequence of Jordan curves for h satisfying (i), (ii), and (iii) for $\alpha = \infty$, and if Y_n denotes the region bounded by J_n for each n, then it is easy to show that if $\{\lambda_n\}$ is any sequence of real numbers tending to ∞ , then the harmonic measure of the set $\{z \in J_n: |g(z)| \ge \lambda_n\}$ relative to Y_n tends to zero as n tends to ∞ . Thus, the harmonic measure of $\{z \in J_n: |f(z)| \ge \lambda_n\}$ relative to Y_n tends to 2π as $n \to \infty$ for some choice of λ_n . Thus f is "almost" an annular function.

REFERENCES

- 1. F. Bagemihl and W. Seidel, Koebe arcs and Fatou points of normal functions, Comment. Math. Helv. 36 (1961), 9-18. MR 25 #5183.
- 2. P. Lappan, Non-normal sums and products of unbounded normal functions, Michigan Math. J. 8 (1961), 187-192. MR 24 #A1403.
- 3. ——, Some results on a class of holomorphic functions, Comm. Math. Univ. St. Paul 18 (1970), 119-124. MR 44 #1810.
- 4. G. R. Mac Lane, Asymptotic values of holomorphic functions, Rice Univ. Studies 49 (1963), no. 1, 83 pp. MR 26 #6419.

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48824