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AN ANNULAR  FUNCTION WHICH  IS  THE  SUM
OF  TWO   NORMAL  FUNCTIONS

PETER  LAPPAN

Abstract. It is known that a nonconstant normal function

cannot have a Koebe value. An example is presented of an annular

function which is the sum of two normal holomorphic functions.

This example shows that a sum of two normal functions can result

in a nonconstant function which has the Koebe value co.

1. Let D denote the unit disc and C the unit circle in the complex plane.

A function/meromorphic in D is said to be a normal function if the family

of functions {f(S(z)) : S £ £f} is a normal family, where if is the collection

of all conformai mappings of D onto itself. Let N denote the set of positive

integers and let Z denote the set of all integers. A function/which is mero-

morphic in D is said to have the Koebe value a if there exists a sequence of

Jordan arcs {/„} in D such that

(i) there exist distinct radii Rx and R2 of D such that, for each « e N the

arc /„ meets both Rx and R2;

(ii) if «z„ = inf{|z|:z £jn}, then «/„—»-1 as«—>-co;and

(iii) if a is finite and if w„=sup{|/(z) —a| :z £Jn} then un-*0 as «—»-co;

while if a=oo and if r„ = inf{|/(z)| :z eJn}, then vn—>cc as «—»-co.

A function / holomorphic in D is called an annular function if there

exists a sequence of Jordan curves {/„} in D such that for each n £ N the

curve J„ is in the interior of Jn+X and conditions (ii) and (iii) are satisfied

with a =co.

It has been proved by Bagemihl and Seidel [1, Theorem 1, p. 10] that a

nonconstant normal meromorphic function cannot have a Koebe value,

either finite or infinite. The author [2, Theorem 5, p. 191] has shown that a

sum of two normal functions need not result in a normal function. Further,

since the Nevanlinna characteristic function Tir) for a normal function

satisfies F(r)=0(log(l/(l—/•)), the sum of two normal holomorphic

functions must result in a function which is either a constant or is in

Mac Lane's class A (see [4, pp. 43-44]), and such a function cannot have a

finite Koebe value. We prove here that a sum of two normal homomorphic

functions actually can have oo as a Koebe value in the strongest possible

sense.
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2. If T is a crosscut of D with 0 £ Y and if w is a point of C we say that

T separates Ofrom w if the component of D — T which contains 0 does not

have w as a boundary point. The following lemma is basic.

Lemma. Let h be a function holomorphic in D. If for each point w £ C

and each n £ N there exists a crosscut A (h», «) such that \h(z)\^.n for each

z £ A (w, n) and A (if, «) separates Ofrom w, then h is an annular function.

Proof. For each n £ N let 7J»„ be the component of {z £ D : |//(z)| <«}

containing the origin. (It is possible that Dn=0 for a finite number of ns.)

Let w be any point of C. For each « e N, A (w, n)(~\Dn=<z> so that, if AT„

denotes the boundary of Dn we have that w $ Kn. Let «0 be the least

positive integer « for which Dnjí 0 and set Jn = Kn<¡ for «^«0 and Jn = Kn

for «>«0. Then/,, is a Jordan curve, |«(z)|^« for z e/„, and Cnjn=0.

Thus « is an annular function.

Theorem. There exist two normal holomorphic functions f and g in D

such that the sum h=f+g is an annular function. Further, g can be chosen to

be a function with positive real part.

The proof of this theorem involves many detailed considerations, but

the idea is basically to choose two normal holomorphic functions/and g

such that the sum h satisfies the hypotheses of the Lemma. We note that,

by renumbering the crosscuts A (w, «), if necessary, we can replace the

condition that \h(z)\^.n on A (w, n) by the more general condition that for

each fixed w £ C we have

(1) lim(inf{|n(z)| : z e A (w, n)}) = oo.
n-*GO

Let M(z) denote the elliptic modular function in D. Since M(z) omits

the values 0, 1, and oo in D, we can take log M(z) and log log M(z) to be

holomorphic in D by assigning an appropriate value to the origin. Further,

since both log M(z) and log log M(z) omit a countable set of values, both

are normal functions. We shall be concerned with the real part of the

logarithm function, and we use the notation Re(log z) = ln \z\. Let Ax,

A2, A3, and A4 be the subsets of C defined by

Ax = {w e C:M(z) has an asymptotic value either 0 or co at w},

A2 = {h» e C:log M(z) has the asymptotic value 0 at h1},

A3 = {w £ C.for each n e N there exists a crosscut

A (w, «) of D which separates 0 from h» and such

that In |log M(z)\ > In «77 for z e A (w, «)},

and

A,= C- ÍAXVA2UA3).
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We may assume, without loss of generality, that 1 £ A2. We note that

both Ax and A2 are countable sets. Since the components of the set of z

defined by Arg Miz)=ktr, k £ N, are all crosscuts of D which are arcs of

circles orthogonal to C, and since the radial projection of these com-

ponents onto C consists of all but a subset of C of measure zero, it follows

that A3 has measure 27r so that A4 has measure zero (see [3, p. 123] for a

more detailed account of this situation).

We claim that AX^A3. If w e Ax, then for each «eZ there exists a

crosscut a(vv, «) of D such that Arg M(z)=«7r for z £ a(w, «) and a(w, n)

is an arc of a circle orthogonal to C at w. For each « e N, let Gn be the

component of D — (ct(w, n) Utc(it', — «)) having both a(w, n) and a(vr, —«)

as boundary arcs of Gn. Then |ln|M(z)| |->co as z—>w from within Gn.

Thus, by taking an appropriate crosscut of G„, and combining this

crosscut with appropriate subarcs of a(vv, «) and a(w, — n) in the obvious

manner, we obtain a crosscut A (w, n) of D which separates 0 from h» and

is such that ln|log M(z)|>In «7r for z e A (w, n). Since the process can be

done for each « 6 N, we have that w e A3.

Now, for each n £ N, let En be the component of {z e D:\n\log, M(z)\<

In «7r} which contains the origin. (It is possible that En=0 for a finite

number of«.) If Bn is the collection of all points of C which are accessible

boundary points of E„, then Bn is a closed subset of C (see [3, Lemma,

p. 121]). Clearly, for each « £ N, Bnf\A3=0. It is possible that A2r\

Bn9i0 for some «, but we claim that the set Bn=Bn — A2 is a closed set

for each « e N. For if w e A2, then for each « e Z there exists a crosscut

á?(n», n) of D such that á?(n', «) has one endpoint at w, &(w, n) is an arc

of a circle orthogonal to C at w, and Arg log M(z)=mr for z £âS(w, ri).

Thus, for each« £ Nandz £3§(w,ri) Kjâiï(w, —«)wehavetheln|log M(z)\>

In «77 so that if w e BnC\A2, then w is an isolated point of Bn. It follows

that Bn is a closed set for each n £ N. It should be further noted that for

w £ A2, n£Z, the endpoint of 35 iw, n) other than w is a point of Ax, and

hence is not a point of B^.

Ifw e A2,n£ N, and if //„is the component of 7J> —(á?(vv, «) Uá?(iv, —«))

having both 3S(w, n) and ¿$(w, —«) as boundary arcs, then

In |log A7(z)| —» — oo

as z—»-w from within 77„. By taking an appropriate crosscut of 77„ and

combining this with appropriate subarcs of 2iï(w, ri) and 35(w, — ri) in the

obvious manner, we obtain a crosscut A iw, n) of 7) which separates 0

from w and which has both its endpoints in Ax such that [log log M(z)\>

In «77 for z e A iw, «).

Since A2  is a countable set, let A2 = {wx, w2, w3, • • • , irn, • • •} and
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let

Pn =  Û  ( Ü A K, k)\   U {Wl, W2, W3, • • ■ , W„},
3 = 1   U=l /

and let

Qn=Pn U{ze7J>:|z|^l -1/«}.

Then Qn is a compact subset in the closure of D, B'n is a compact subset of

C, and QnC\B'n=0. Let r3„ denote the distance between Qn and Tin, let

<5„(0) denote the distance from eiB to £„, and let 7„ = {0 e (0, 27r):o„(0)>

ÔJ2}. We note that

JIv.

dfl/áB(6) < co.

We will make repeated use of the following general principle. If g is a

compact subset in the closure of D and if A is an arc of C where

A = {ete:6x < d < d2}

such that Q DA = 0 , then for z e Q we have

(2) log
em - z = röl_ii

iiH - z     k eie
dd

where the logarithm is taken with imaginary part between 0 and 277 for

z £ Q. From (2), it follows that

(3)
i     e P2     dd P2;      Baa    =    ¿0/0(0),

-J»i |e!" - zl     Jo.

where r5(0) denotes the distance from e'e to (2-

Returning to the sets Qn and Bn, n £ N, and setting Sn={6 e (0, 27r):

ete £ Bn}—recall that w=l e A2 and hence is not in B'n—then Snczln and

Sn is a compact set with measure zero since B'nczA^. Hence, for each ne N

there exist a finite number of disjoint open intervals (a(«,y), ¿>(«,y')),

lSjSmn, suchthat

(4)

(5)

S„<= Uiain,j),bin,j))c In,
3=1

m»     fHn.i)

2 o-0/á„(0)< (l/2)n+1
3=1 Ja(n.j)

»,

2 (&(«,./) -fl(«,7))< (l/2)n+1,

and such that none of the points e'ain'3> or e,i>(n'') lies in A2. By (3) and (4)
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we have that, for n £ N, z e Qn,

eia{n.i) _

'°g   .-M.,, <(l/2)"+1.(6) 2,
3 = 1

Now let

gn,,iz) = (iM\oge^Z'.]~_Zz + M&Om) - ai»,j)).

Then g-BiJ(z) has the property that its real part is the harmonic measure of

the arc Tnj = {eie:ain,j)<6<bin,j)}. It follows that Re^„,5(z)>0 for all

z £ D, and Reg„ ,(z)->-l as z approaches any point of THj from within D.

We define

(7) gw = 22«,,(4
7! = 1 3 = 1

By (5), (6), and the fact that D<= [j Q„, we have that giz) is a function

holomorphic in D, and g(z) has positive real part in D with Re g(z)—>-+ oo

as z approaches any point of At, since any point of Ax is in all but a

finite number of the sets B„. Further, for z e (2„, by (5), (6), and (7) we

have that
n—1 mn

\g(z)\Sl +sup22lg*.»<2)l
2E0„ fe-1  3 = 1

where the right side is a finite sum and is thus a fixed number for each

fixed «. It follows that if w e ¿4S, then w=wq for some natural number q

so that h' = k>9 e Qn for //^a and this yields that |log log M(z)-fg(z)|—>-oo

as z—*w along U*=i A (w, A). Since g(z) has positive real part, for z e A3

we have that |log log Miz)+giz)\—»cc as z-*-w along (J*°=i A (w,/r). It

remains to obtain the same relationship for w e A<¡. However, we note that

if X=D — {z £ D: |log A/(z)|<|}, then each point of At is an accessible

boundary point of X, and further, for each point w e /14 and each n e N

there exists a crosscut A (w, n) of D such that A (w, «)<= ATi{z e 7):

\z — MJ<1/«}. (The region A' is simply D with some nearly circular regions

deleted, where each of the regions deleted has only one point of contact

with Cand each such point of contact is a point of A2.) Each such A (w, «)

separates 0 from w. But ln|log A7(z)|>ln(|) for z £ X, and hence, since

Reg(z)—»-+00 as z—*w we have that |log log jW(z)-|-g(z)|—>-oo as z—<-w

along U*=i f\ ('*'' A). Thus (1) is established for each w £ C and, by the

second sentence following the statement of the Theorem, together with the

Lemma, the Theorem is proved with /(z)=log log M(z) and g(z) as

defined in (7).

We remark that, since g is a function with positive real part it is a

function of bounded type, so that the main burden of making // an annular
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function falls on /. For if {/„} is the sequence of Jordan curves for «

satisfying (i), (ii), and (iii) for a= go, and if Y„ denotes the region bounded

by Jn for each n, then it is easy to show that if {A„} is any sequence of real

numbers tending to co, then the harmonic measure of the set {zeJn:

\g(z)\^.A„} relative to Y„ tends to zero as « tends to co. Thus, the harmonic

measure of {z eJn:\f(z)\^kn} relative to Yn tends to 277 as «—»-co for some

choice of A„. Thus/is "almost" an annular function.
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