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TWO CHARACTERIZATIONS OF LINEAR BAIRE SPACES

STEPHEN A. SAXON1

ABSTRACT. The Wilansky-Klee conjecture is equivalent to the (un-

proved) conjecture that every dense, 1-codimensional subspace of an

arbitrary Banach space is a Baire space (second category in itself).

The following two characterizations may be useful in dealing with this

conjecture:  (i)  A topological vector space is a Baire space if and on-

ly if every absorbing, balanced, closed set is a neighborhood of some

point, (ii)  A topological vector space is a Baire space if and only if

it cannot be covered by countably many   nowhere dense sets, each of

which is a union of lines (1-dimensional subspaces).  Characterization

(i) has a more succinct form, using the definition of Wilansky's text [8, p.

224]:   a topological vector space is a Baire space if and only if it has

the  t property.

Introduction.  The Wilansky-Klee conjecture (see [3], [7]) is equivalent

to the conjecture that every dense, 1-codimensional subspace of a Banach

space is a Baire space. In [4], [5], [6], [7] it is shown that every counta-

ble-codimensional subspace of a locally convex space which is "nearly"

a Baire space is, itself, "nearly" a Baire space.  (Theorem 1 of this paper

indicates how "nearly Baire" a barrelled space is: Wilansky's class of

W'barrelled spaces [9,p. 44] is precisely the class of linear Baire spaces.)

The theorem [7] that every countable-codimensional subspace of an unor-

dered Baire-like space is unordered Baire-like is the closest to an affirmation

of the conjecture.   (A locally convex space is unordered Baire-like if it

cannot be covered by countably many   rare [nowhere dense], balanced, con-

vex sets.)  The two characterizations in this note, of some independent in-

terest, seem also likely aids for tackling the Wilansky-Klee conjecture.

(E.g., see Remarks (a).)
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Definitions.  The definitions of Horváth's text [2] are generally adopted

here.  In particular, if A, B  are subsets of a vector space  F, we say B is

balanced it ÀB C B whenever  |À| < 1,  and A  is absorbing if, given  y in

F, there corresponds a  8 > 0   such that  Ày e A   whenever   |A| < 8.

Theorem 1   (cf.  2.1 Theorem of [7]).  A topological vector space  E  is

a Baire space if and only if every absorbing, balanced, closed set B  is a

neighborhood of some point.

Proof.  If  B  is rare and absorbing, then  E =(J°°=1(wB)  and each  nB is

rare, implying  E  is not Baire.

Conversely, if  F  is not Baire, then there exist x in  F  and a balanced,

closed neighborhood  U of zero such that  x is not in   U.  Let V be a balanced,

closed neighborhood of zero such that   V + V C U and let  iA   i be a sequence

of rare, closed sets whose union is   V.  We assume  E  is a complex vector

space.  (The real case is similar but easier.)  Define

n-1

B„ =   U   e2kni/n(A j u • • • U An)    for « = 1, 2, ....

fe=0

[If E were real, we would let B    =  (A , U • • •  U A  ) u(-I)(A jU  • • • U A  ).]

We show that  H =[<J°C-A(l/n)B )  is absorbing and rare.  Let   y be in  F,

and let  sp(iyS)  denote the span of  iyi.  Since  V is absorbing, balanced and

closed,  sp(iyS)n V is a Baire space and there exist  p a positive integer,

8 > 0, and z a complex number such that

(*) ay 6 4      for la - z\ < 8.
P ' ' —

Since   el    is uniformly continuous on 0 < 6 < 277, there is an integer  q> p

such that

Ie      -e      I • 1*1 < 8/2    for  \ei-02\ <2n/q.

Suppose n > q.  Then given  0, 0 < 6 < 2n, there exists an integer k, 0 < k

< n - 1, such that   \6 - 2kn/n\ < 277/« < 277/9, so that (**)  implies

(**•) |e¿0- e2^¿/*| . |*| <S/2.

Since   BBDU^e2i,ri/"«pI(^  and (***) imply that

(****) Ay e ß^    whenever  |z| - ¿5/2 < |A| < |z| + 8/2.

Fix N > q such that  |z|/(/V + 1) < S/2. Suppose, for some n>N, y satisfies

\z\/n > \y\ > |z|/(t2 + 1). Then
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îM-t-GJO)^1*1    i
72+1       72

\z\ N 1  / £\

«+I-,'-«-«V 2/

so that yy £((1/72)8 ) by (****). Hence yy' e H for 0 < |y| < |z|/N (zero

is obviously in H) and W absorbs y if z ^ 0. If z = 0, (****) implies W

absorbs  y.  Since y was chosen arbitrarily, f/  is absorbing.

We see that H is rare, exactly as in [7]: if H contains some open neigh-

borhood W oí a point y, then, since (J <t((l/B)ß ) is a finite union of rare

sets and hence rare, we have

WC
Ln^&   \ /J k

for & = 1, 2, • ■ • .  Also, there is some  5 > 0   such that y ± 8x € W.  But this

would imply that

28x = (y + 8x) - (y - 8x) e V/k + V/k C V/k

for k = 1, 2, •••, a contradiction since  2¿5x £(l/k)V whenever  l/k< 28.

(U is balanced.) Thus H is rare.

Finally, we let  B  be the closure of the balanced core of H [2, p. 80]

to obtain an absorbing, balanced, closed, rare set, which completes the proof.

Remarks,  (a)  Application of Theorem 1 facilitates the proof of Theorem

5.1 in [7]: if  B  is an absorbing, balanced, closed set in a closed, 1-codimen-

sional subspace  M  of a topological vector space   E  and  x € E ~ M, then

B   = B + ¡Ax: |a| < l! is clearly absorbing, balanced and closed in  E, and if

B is rare in  M, so is  B     in  E.

(b)  A balanced, convex set has an interior point if and only if it is a

neighborhood of zero.   Thus Theorem 1 invites comparison of linear Baire

spaces with the several important classes of locally convex spaces defined

by prescribing what sorts of absorbing, balanced, convex sets should be neigh-

borhoods of zero. (See [2, Chapter 3].)  For example, a locally convex space

is (Baire) [barrelled] if and only if every (absorbing, balanced, closed) [and

convex] set has an interior point.  In the same vein, a locally convex space

is Baire if and only if

(t) it cannot be covered by countably many rare, balanced sets.

Here (t)  differs from the definition of "unordered Baire-like" only in the omis-

sion of the word "convex".

(c)  By Theorem 1, if a space is not Baire, it can be covered by an in-
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creasing sequence of rare, balanced sets.  (Cf. definition of "Baire-like"

in [6].) In [l, p. 145, Exercise 8], Grothendieck showed a certain normed,

barrelled space is not Baire by covering it with an increasing sequence of

rare sets, each a union of 1-dimensional subspaces; i.e., each closed under

scalar multiplication.  The import of Theorem 2, below, is that every non-

Baire space can be so covered.  However, we cannot, in general, additionally

require the sets to be closed under vector addition, since there are quasi-

Baire spaces [5] which are not Baire (nor even Baire-like).

Theorem 2.  A topological vector space E  is a Baire space if and only

if it cannot be covered by an increasing sequence of rare sets, each of which

is closed under scalar multiplication.

Proof.  Let x, U, V, B be as in the proof of Theorem 1. Let  K   =

iy £ B: ny f. V!, and let  L     be all scalar multiples of elements of  K    (n =

1,2, • • • ).  Now  w £ L     implies  w -.ay, where  y £ B  and  y / (l/n)V.  If

also w £ (l/n)V, then   |a| < 1, since (l/n)V is balanced, and therefore w £ B,

since B is balanced. That is,  L   d ((l/n)V)  is contained in the rare set  B,

and hence is rare.  Indeed, L     is rare, for if  L     were dense in a nonempty

open set then  L   d ((l/n)V)  would be also; scalar multiplication is contin-

uous, L    is closed under scalar multiplication, and (l/n)V is a neighbor-

hood of zero (n - 1, 2, • • • ).  Define   LQ = \y £ V: ny £ V     for n = 1, 2, ■ ■ • !.

L„, which may or may not be empty, is closed under scalar multiplication.

Now  LuL.uL.U '••   is closed under scalar multiplication and contains

the absorbing set  B C V, and hence is all of  E.  To see that the sequence

iS   1 fulfills the requirements of the theorem, where  S    = L. U L. U • • • U L

(n = 1, 2, • • • ), one needs yet to observe that  L     is rare.  (Finite unions of

rare sets are rare.) But F = LQ + LQ  is a linear subspace contained in  V +

V C U. Hence F C U is a closed, proper subspace  (x </ U), which means that

F    is rare; thus  L    C F    is also rare.
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