ERRATUM TO VOLUME 39

Su-shing Chen, Carathéodory distance and convexity with respect to bounded holomorphic functions, Proc. Amer. Math. Soc. 39 (1972), 305-307.

The author would like to thank A. Hirschowitz for pointing out a gap in the proof of Theorem 2, which is not true due to a counterexample of N. Sibony in C. R. Acad. Sci. Paris 275 (1972), 973-976. However we have the following replacement.

Theorem 2. Let X be a complex space such that X is B(X)-separable. X is complete with respect to the Carathéodory distance on X if and only if, for each discrete sequence $\{p_k\}$ in X, there exists a sequence $\{f_k\}$ in $F_{\perp(b)}$ such that $\sup |f_k(p_k)| = 1$.

Proof. Consider the closed ball $\overline{B}(a, p) = \{q \in X | c(p, q) \le a\}$ with center $p \in X$ and radius a > 0. If $\overline{B}(a, p)$ is not compact, then there exists a discrete sequence $\{p_k\}$ in $\overline{B}(a, p)$. The sequence $\{p_k\}$ is also discrete in X, since $\overline{B}(a, p)$ is closed. The existence of $\{f_k\}$ in $F_{+(p)}$ such that $\sup |f_k(p_k)| = 1$ leads to a contradiction. In fact, for each $q \in \overline{B}(a, p)$, $f \in F_{+(p)}$,

$$\rho(0, f(q)) \le C(p, q) \le a,$$

$$\frac{1}{2} \log \frac{1 + |f(q)|}{1 - |f(q)|} \le a$$

and

$$|f(q)| \le \frac{e^{2a}-1}{e^{2a}+1} < 1.$$

Conversely, if $\{p_k\}$ is a discrete sequence in X, then there exists a nested sequence $\{\overline{B}(a_k, p)\}$ of closed balls with center $p \in X$ and radii a_k approaching to ∞ such that $c(p_k, p) = a_k$. Thus there exists a sequence $\{f_k\}$ in $F_{\bullet}(p)$ such that $\sup |f_k(p)| = 1$.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32601

Received by the editors December 26, 1973.