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PRODUCTS OF M-SPACES

C.BANDY1

ABSTRACT.   The author associates with each pair X, Y of Af-spaces

such that  X x y is not an A/-space, a pair of countably compact closed

subspaces A C X, B C Y such that A X B is not countably compact, and

for each pair A, B of countably compact spaces whose product is not

countably compact, there is a pair of M-spaces S, T (in fact, S and T

ate countably compact) such that Sx T is not an A/-space and such that

A and B are closed subspaces of S and T respectively.

During the last few years M-spaces have become of interest to people

in general topology.   M-spaces are topological spaces having a normal

sequence satisfying certain properties.   For the interest of the reader we

list two ways in which normal sequences have been used.

(1) A necessary and sufficient condition for metrizability of a T. -space

is the existence of a normal sequence  {U   I n £ N] such that \A\U   \ n £ N\^ 77   ' >"' 72   '

form a base for the topology.

(2) If X is a completely regular space, a necessary and sufficient con-

dition that an open cover (7 of X be part of some uniformity on X is that U

be a member of some normal sequence for X.

Throughout, all spaces are assumed to be Hausdorff.   The set of posi-

tive integers will be denoted by N.   If U is an open covering of a topological

space X, then the union of all members of U containing the point x of X will

be denoted by st(x, U).   The sequence  \U    | n £ N\  is a normal sequence

for X provided U   is an open cover of X and U     , star-refines   U  .   The
r 72 r 72 + 1 n

sequence  {U  \n £ N\ is an M-sequence fot X provided that if x is a point of

X and x    is in st(x, U  ) for each n in N, then \x   \n £ N\  has a cluster point.
72 72 77 *

A topological space X is called an M-space (see [2]) provided X has a normal

sequence that is also an M-sequence.

Thus M-spaces are natural generalizations of metric and countably com-

pact spaces.
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In [2] it is proved that a topological space is an M-space if, and only

if, it is the inverse image of a metric space under a quasiperfect map (con-

tinuous, closed, surjective, and the inverse image of each point is countably

compact).   This map gives a natural decomposition of an M-space into

closed, pairwise disjoint, countably compact sets.   Lemma 1 presents a

proof of this decomposition since the construction is used later in the paper.

I would also like to point out that a topological space is a paracompact

M-space if, and only if, it is the inverse image of a metric space under a

perfect map; and paracompact M-spaces and paracompact p-spaces (in the

sense of Arhangel skil) are equivalent.

Lemma 1.   Let \U  \n £ N\  be a normal sequence for the M-space X.77 ' l ' r

Then If)   st(x, U  )\x £ X\  is a decomposition of X into closed, pairwise

disjoint, countably compact sets.

For each x in X, the set fl   st(x, U  ) is closed since  st  (x, U     ,) is
72 72 72 + 1

contained in st(x, U  ) so the closure of st(x, U     , ) is contained in

st(x, U  ).    Hence   C\nst(x,   Un) equals  Ç\n(clst(x,   Un)).    The     set

(l   st(x, U ) is countably compact because if \x   \n £ N\  is a sequence of

points in  fï   st(x, U  ) then x    is in st(x, U ) and since \U  In € A/} is an M-r '    "72 ' 72 72 '77 72'

sequence,   \x   \ n £ N\   has   a   cluster   point.   To     show     the      set

If)   st(x, U  )\x £ X\  is pairwise disjoint suppose the point y is not in

(l   st(x, U ).   This implies that there is a positive integer 2/2 so that y is

not in st(x, U   ).  Therefore, y is not in st  (x, U     j), implying that there

is no point common to both st(x, U     .) and sr(y, U     .).

From the last step in the above proof, it also follows that any cluster

point of a sequence  \x   \n £ N\, with x    in st(x, U  ), is in C\   st(x, V  ).

Theorem 1.  If X and Y are M-spaces such that X x Y  is not an M-

space, then there is a countably compact closed subspace A contained in X

and a countably compact closed subspace B contained in Y such that A x B

is not countably compact.

Let X and Y be M-spaces such that  X x Y is not an M-space and let

\U  \n £ N\ and \V  \n £ N\ be normal M-sequences for X and  Y respectively.

The set

{W \W   = \Ux V\U £ U    and  V £ V    for each n in  N\\
72 '      72 ' 77 77

is a normal sequence for X x y, because if (x, y) is a point of X x Y then

11/1(7 £ U    for 27 > 1 and x in U\  is contained in some open subset u of U     ,
' 72 r n— I
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and \V\V £ V    for n > 1 and y in V|  is contained in some open subset v of

V      ,, therefore  \U x V\x £ U £ U   and y £ V £ V  \  is contained in u x v.
72- 1' ' n J 77

Since  X x y is not an M-space there is a point (x, y) in X x y and an

infinite closed discrete set \(x  , y  )\n £ N\ contained in X x Y such that
72    J n   '

(x  , y   ) is in st((x, y), W   ).   The set

A = \x \n £ N\ U [h st(x, uj\

is countably compact since f)   s/Oc, (7  ) is countably compact by Lemma 1

and every subsequence of \x   \n £ N\ has a cluster point in (1 sr(x, U ).

Similarly

B = \yn\n£ fV|u ["f| st(y,  uj]

is countably compact but the product of A and B is not countably compact

since  A x B contains the infinite closed discrete set \(x  , y  )\n £ N\.

Corollary 1. // X and Y are normal M-spaces such that X x Y is not an

M-space, then there is a pair of normal countably compact closed subspaces

A C X, B C y such that A x B  is not countably compact.

Corollary 2 [2, Theorem 6.4].  The  product  of a pair of paracompact

M-spaces is an M-space.

In [3] J. Novak proved the existence of two countably compact subsets

A and B of ß(N), the Stone-Cech compactification of the positive integers,

whose product is not countably compact.   A. K. Steiner [4] used a modifica-

tion of Novak's example to construct two countably compact spaces X and  y

such that X x Y is an M-space, but is not countably compact.   Theorem 2

also uses Novak's example.   Although it has already been proved that the

product of M-spaces need not be an M-space [l] the following example is

simpler and is necessary in the corollary to follow.

Theorem 2.  // A and B are countably compact spaces whose product is

not countably compact then there is a pair of M-spaces S and T (in fact S

and T are countably compact) such that S x T is not an M-space and A and

B are closed subspaces of S and T respectively.

Let  [l, Í2] be the space of countable ordinals together with the first

uncountable ordinal 0 and having the order topology.   Define a topological

space S by replacing each nonlimit ordinal in   [l, 0] with a homeomorphic

copy of A.   An open set containing a point of S will be an open subset of the
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homeomorphic copy of A containing the point, if the point lies in a homeo-

morphic copy of A.   If the point A of S is a limit ordinal of [l, Q] then an

open set containing A is A together with the union of all homeomorphic

copies of A replacing the ordinals a. through A in [1, fi] for some a. preceding

A together with the union of all limit ordinals of  [l, Í1] between a and A.

Define a topological space T similarly but using sets homeomorphic to B.

Then each of S and T is countably compact since each sequence of points

in S has the property that either infinitely many members of the sequence

are in some homeomorphic copy of A, in which case the sequence has a

cluster point, or each homeomorphic copy of A contains at most finitely many

members of the sequence, in which case the least limit ordinal greater than

infinitely many members of the sequence is a cluster point of the sequence.

(We say A is greater than a. in S provided A and a. ate limit ordinals of  [l, Ù]

and A is greater than a in [l, 0].   The limit ordinal A of [l, Í2] is greater

than each point of a homeomorphic copy of A replacing an ordinal of  [l, 0]

less than A, and each point of a homeomorphic copy of A replacing an ordinal

a. of [l, 0] is less than each point of a homeomorphic copy of A replacing an

ordinal ß greater than &.)   Now S and T ate M-spaces but Sx T is not an M-

space since  (1   st((Q,, ß), W  ), for any sequence of open covers  \W   \ n £ N\

of S x T, contains a homeomorphic copy of A x B.   This follows since the

intersection of countably many open subsets of S, each containing 0, con-

tains a homeomorphic copy of A and the intersection of countably many open

subsets of T, each containing fi, contains a homeomorphic copy of B; hence

the set (1   sr((fl, 0), W  ) contains a homeomorphic copy of A x B.
77 72 £ i j

Corollary 3.  // A and B are two normal countably compact spaces whose

product is not countably compact then there are two normal M-spaces S and

T whose product is not an M-space.

Question 1.  Is the product of two normal M-spaces an M-space?

Question 2. Ate there two normal countably compact spaces whose

product is not countably compact?

The author would like to thank the referee for many helpful suggestions.
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