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THE RIESZ SUMMABILITY OF LOGARITHMIC TYPE

B. KWEE1

ABSTRACT.      The series S°° ,a     is said to be summable (L)  to  s   if
72=1    72

(log(l — x))~   S°°  ,s   xn    /n,  where s    =S"    ,a   , converges for 0 S x<  I
° 72=1 n n v—\   V °

and tends to  s   when x —• 1—.   The aim of this paper is to discuss the rela-

tion between summability (L)  and Riesz summability (ft,log n, k).   It is

proved that (R, log n, k) i=" (L) holds for OsksI  and is false for K > 1.   It

is also proved that if S°° , a = s(L)  and bounded (R, log n, k)  for K>0 then

S°° ,a   = s(R, log ri, K + 8)  for every   S >0.
77=1   72 '       "     ' '

1.   Introduction.   Let k > 0,   and let

AK(u)=     Z    («-log «)**„.

log 77 <U

If CK(a) = «-KAK(a) —» s  as u —> oo,   we say the series £°° ,a    is summable
' J n— 1   77

(R, log n, k)  to  s  and write X°° ,a    = s(R, log //, k).

If

;     °° s x" + i
r-. 72

2-      i     '
iog(i - x)

72 = 1

where s    = 2"_.av,   converges for 0 < x < 1   and tends to s   as x —►  1-,   we

say the series  X°°  ,a     is summable (L)  to  s.J 77= 1     71

The relation between summability (R, log n, k)   and (L)  will be discussed

in this paper.   We shall prove

Theorem 1.   The inclusion (R, log n, k) Ç (L) holds for 0 < k < 1 area7 z's

false for k > 1.

Theorem 2.    //  S°° ,a     ¿s summable (L) and bounded (R, log n, k),  then

it is summable (R, log n, k + 8)  to the same sum for every  8 > 0.

2.   Proof of Theorem 1.   For 0 < k < 1,  (R, log n, k) Ç (R, log n, 1).   But

summability (/?, log /2, 1)  is equivalent to summability (/)  defined by
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i "     s1 V  — -->

log(»+ D ¿i  v

(see [A, Theorem 37]), and, by [A, Theorem 57], (l) Ç (L).   Hence (R, log w,k)

Ç (L) for 0 < k < 1.

To prove the second part of the theorem, let S00  ,/j    be the series whoser r ' 77= 1    72

partial sums B     ate defined by

»    ß

t   =  Y — =y//"¿',
n        L*ê     v        'n

v=l

where y   »-S     ,l/i/  and t 4 0.   We have

oo        D     r22 , . oo . . oo

-i     ^   "      -d-A  ,-,    „   -d-x) -,     _f/ „
HI    -   >     -= -   /     Z  x    = -  >     y n      x .
(1)   log(l-x)^     « bg(l-x)^» Iog(l-*)£/■

It is easy to verify that  l/y    is totally monotonie.   Hence there exists a

monotonie increasing function  x(x)  such that  1 = y f x"dy(x)  fot n > 0.   It

follows from a theorem of Borwein [l] that, if the right-hand side of (1) tends

to a finite limit s,  then n~lt —> s(A).   Since (n + l)~lt - n~lt = 0(n~ ),

22— li—►   s  by a Tauberian theorem for Abel summability, which is impossible.

Hence 2.n_^,    \s not summable (L).

Let 2/ = log w,  n < w < n + 1.   Then

72-1 w

Z hv lo§ JJ =   Z   Bu lo8 ̂ V~ + B72 lo8 ñ
v<w v=\

72-1    g

=   Y  — + (Xlog«)= 0(a).

v=l

Hence X°° . è    is bounded (R, loe 22, 1).77 = 1     72 \       I e       I       /

We have

^=1 r      v=l   \ /

N p.     B N

= Z¿Z v%o(i)=Zy^-1-'i + o(D.
/¿=1   ^   V=l /¿=1

Let

72 _¿(

a = Y v-l-it = rL-+D(i) + Ai).
n        '-" it

v=l

(See [4, p. 333].) Then
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Iv"1'"- ¿¡TTi + y^i^-dog^).
p.=i p.=i ̂

It follows from a result of Jurkat [5] that X°°_,c2    = 0(R, log 22, 2).   Hence, by

the convexity theorem for Riesz summability [3, p. 19] that X°° ,b   =

OÍR, log K, k)  for k > 1.

3.   Proof of Theorem 2.   We shall use the following lemmas.

Lemma 1.   Let k  be a nonnegative integer.   If C (u)   is bounded, then,

for t > 0,  the series

(2) Z
72=1

is summable (C, k)  to

a  n   l

(3)
Y(k

l^~   H e-tuAk(u)du.
(k+ 1) Jo

Since summability  (C, k)  is equivalent to (R, n, k),  this is a special

case of [3, Theorem 3.51].   Note that there is no need to suppose that

k is an integer; but, as it is much easier to prove the result in this case,

and as this  case is enough for our application, we state the result for this case

only.

Lemma 2.   Suppose that, for some k > 0,   t > 0,   the series (2) is summable

(C, k).   Then the series

00

(4) Y  s (»-'-(«+ I)"')

t7=1     "

is summable (C, k)  to the same sum as (2).

If k = 0,  we are given that (2) converges.   It follows easily that s    =

o(n').   Hence, by partial summation, (A) converges to the same sum as (2).

Suppose now that   k > 0.    It follows from a theorem of [2] that

S°° ,s      ,n~l~     is summable (C, k — 1)  to some sum.   Hence the sequence77=1  77— I v n

\s  _jZ2~M is summable (C, k)  to 0.   By the translativity of (C, k),  the

sequence  \s in + l)"M is summable (C, k)  to 0.   But

Z avv~' =  Z  s>~' - iv + D"') + s> + *>r''
17=» 1 V=l

i.e. the nth partial sums of (2) and (4) differ by  s (n + l)~'.   Hence the re-

sult.
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Lemma 3.   Suppose that

00

(5) f(u)= £   snn-ie-nu

n = \

converges for all u > 0;   suppose that

(6) /(«) = o(a-a)

as  z/ —. 0+   /or every fixed a> 0.   Then, for all t > 0,

n-'-1
(7) Z   S72

77 = 1

is Abel summable to (l/F(t)) /0°V~ lf(u)du.

Take  (>0  as fixed.   Then for any x > 0

oo no

77=1 " n*)ir, ■    Jo

Since (5) converges for all u > 0, it converges absolutely for all u > 0. Ap-

plying this result with a replaced by x, we see that the inversion in the or-

der of integration is justified by absolute convergence.   Hence

oo

Y   s n-l-le-nx =—   Ç    ut-1fiu+x)du.
~  n r(í) Jo

72 =1

Hence it is enough to prove that

(8) J~ B*_1/(« + x)du-   P° ul-lfiu) du— 0

as x —* 0+.   Applying (6) with some a satisfying 0 < a < t,  the difference

on the left of (8) is

o(x-a jX A~ldu\ + o(j2x A-l-adu\ + J~((a- x)'-1 - A-^Adjdu.

The first two terms clearly tend to   0   as x —»0+.   The third is

(9) 0{x J~~ «'-2|/U)|d«V

Again using (6), and using also the result that, for large   a,  f(u) = 0(e~u),  we

find that the expression (9) tends to 0   as x —» 0+;  hence the lemma.

We can now prove Theorem 2.   Let k be an integer with k > k.   Since

X°° ,a    is bounded (R, log n, k), it is also bounded (R, log n, k).   By

Lemma 1, the series (2) is summable (C, k)  to the expression (3).   Hence,

by Lemma 2, the series (A) is summable (C, k),  and hence Abel summable
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to the same sum.   Now, by the analogue for Riesz bounded series of the limi-

tation theorem for Riesz summable series

(10) s   = 0(«*(log n)k).
n °

For 0 < t < 1,   we have

I * /  1     ,   y    CP{t)

nl     (n+lY       Ui+1+ ¿?int+P+1
\

where

D    (A M \ ^f        í        \n(t) = o(-±-\ - o(-L)
\nt+k + 2J        \nk + 2J

uniformly in  /,  and where  c (t) is, for each p,  a bounded function of t.

Hence, by (10),  ^~=1s„ßn(i)   converges uniformly in  r.   It follows from Lem-

ma 3 that the series (A) is Abel summable to

h        c   (t) °°

.... _i_ p° ut-if(u)du+t y —— r»ítp"'/(»)^+í z * r m-
(11) rit) Jo ¿nr + p)Jo 71=1 " "

Hence the expressions (3) and (11) are equal.

Now for large a, f(u) = 0(e~u) so that the contribution of the range

a > 1 to the first term in (11) tends to 0. We have /(a) ~ s log(l/a) as

u —> 0+,

f1 a'"1 log ! ¿a =   r ve~vt dv = r\
JO 6  u JO

and, for fixed r] > 0,  f ul~ llog(l/u) du = 0(1)  as  / —» 0+.   Hence

(t/r(t))\~y-lf(u)du _ s  as  Í-.0+.  Since,  for p > 1, /V+<°-7(a)/&

is bounded, and by uniform convergence X°°  ,s  R (t)  is also bounded    Hence

the expression (3) tends to  s  as  / —> 0+.   In other words

tk+l       Ç" e-tuukCkiu)du-s

Tik+ 1) Jo

as  t —> 0+.   Since  C (a)  is bounded, it follows from a theorem of Wiener

(as stated, for example, in [4, Theorem 232]) that

Cfe+1M = — Ç1" ukCkiu)du-s
wk+iJo

as w —► oo.   In other words,  X°°   ,a    is summable (R, log n, k + 1)  to  s.   The

result now follows from the convexity theorem for Riesz summability.
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