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ON THE EXISTENCE OF POINT COUNTABLE

BASES IN MOORE SPACES

G. M. REED

ABSTRACT.  In this paper, the author answers in the negative two ques-

tions raised by E. E. Grace and R. W. Heath concerning the existence of

point countable bases in Moore spaces.   These answers are obtained by a

general construction technique developed by the author which associates to

each first countable   T  -space a Moore space.
«

In [A], F. B. Jones showed that if  2   ° < 2    i,  then every separable nor-

mal Moore space is metrizable.   Hence, since each separable Moore space

with a point countable base is known to be metrizable ([8] and [6]), the follow-

ing question has often been raised: If 2   ° < 2    1,  must each normal Moore

space have a point countable base?   In [l], E. E. Grace and R. W. Heath con-

sidered metrizability of metacompact (pointwise paracompact) Moore spaces

and of Moore spaces with a point countable base.   Also in [l], they raised

the following two questions whose solutions would be beneficial to a solution

of the above question: (1) A Moore space S is said to have property  P  pro-

vided that for each separable subset M of S  and each open covering H oí

S,  there exists an open covering  K oí S   such that  K refines  H,  and M in-

tersects only countably many members of K.   Grace and Heath noted that if

X X
2   ° < 2   *,  then each normal Moore space has property P.

Question 1     Does each Moore space with property  P have a point count-

able base?

(2) Question 2.   Is each Moore space with a point countable base meta-

compact?

In [7], the author described a technique which associates to each first

countable  T2-space X.   a Moore space  X.   In this paper it is shown that

(i) if Xn   is the space of countable ordinals with the order topology, then the

associated space X provides a negative answer to Question 1, and (ii) if XQ

is a certain space given in [2], then the associated space X provides a nega-
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tive answer to Question 2.   Note that a negative answer to Question 2 was

announced by Heath in [3], although to the author's knowledge such an exam-

ple has never appeared in print.   However, Professor Heath has shown his

example to the author, and the author gratefully acknowledges that his solu-

tion to Question 2 was obtained with hindsight of Heath's example.

A development for a space S  is a sequence  G,, G2, •« <  of open cover-

ings of S  such that (1)  G+1 CG. for each z,  and (2) if p  £ S and D is an

open set containing p  then there exists an n  such that each element of G

containing p  is contained in  D.   A Moore space is a regular T,-space which

has a development.   The statement that a collection  H of point  sets is point

finite (point countable) means that no point belongs to infinitely (uncountably)

many elements of //.   A space S is metacompact provided for each open cov-

ering G of S  there exists a point finite open covering H oí S which refines

G  and covers S.   It follows immediately that each metacompact Moore space

has a point countable base.

Theorem 1.   There exists a Moore space X such that for each open cov-

ering H of X and each separable subset M of X there exists an open cov-

ering K of X such that K refines H,   and M  intersects only countably many

members of K but X does not have a point countable base.

Proof.   Denote by  X„   the space of countable ordinals with the order

topology.   For each  x £ XQ   such that x is a limit ordinal, denote by x., x2,

• •<  a sequence of elements of X„   which converges to x.   Then, for each  i,

let u.(x) = \y £XAx. precedes y  and either y  is x or y precedes x\.   For

each  x £ Xn   such that x is not a limit ordinal in  Xn   and for each  i, let

zz .(x) = 5x5.   Note that for each  x £ X0, uAx), uAx), • • •■  forms a local base

for x in X..   Now, denote by 5,   a copy of X.   and for each positive integer

i,  denote by S, j   .,   a unique copy of X„   distinct from S..   Let X = S, U

(U^LjS/j   A  and for each  p £ X,  denote by  x    the element of XQ   which is

identified with  p.   If p £ X  and / is a positive integer, define g (p)  as fol-

lows: (1) If p £S(l ¿)  for some z,  let g .(p) = {p\.   (2) If p £ S L,  let g .(p) =

\p] U {q £ S..   Ai > j and x    £ u .(x )  in  Xn 1.   It follows from [7] that if G . =

'g (p)\p e X  and / > z'i for each  z,  then  G,, G2, • • •  is a development for

the nonnormal Moore space X.   To see that X  is not normal consider H =

\p £ S j|x    is a limit ordinal in  X„ !  and  K = \p £ Sj \x    is not a limit ordinal

in X. i.   It is easily seen that H  and  K  ate two mutually exclusive closed

sets in  X which cannot be separated by mutually exclusive open sets.

Claim 1.    X  is locally separable.   To see this, for each  p £ X  and each
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7,  consider g(.p).   Note that since each initial segment in  X„   is countable,

by definition so is g(p).

Claim 2.   Each separable subset M of X  is countable.   For if M is

separable,  M H S,,   -,  is countable for each  z,   since each point of X not on

Sj  is isolated.   Thus,  T= Mn(U°=i^n   ">^  *s countable.   Now, let  t £S^

such that it p £ T then  x    is x. or x„  precedes  x.  in X„.   It follows that
L p t p r to

if q £ Sj   and x    follows x    in  XQ,  then   q is not in the closure of  T in  X.

Thus, since no point of S ,   isa limit point of S,,  there are at most countably

many points q of Sjfl M   such that x    follows x    in  X„.   Hence,  M  is count-

able.

Claim 3-   If M  is a separable subset of X  and H  is an open  covering of

X,  then there exists an open covering  K of X  such that  K refines //,  and

M intersects only countably many elements of K.   By Claim 2,  M  is countable.

Thus, let t £S,   such that if p £ M then either x,  is x, or x.   precedes x,
'1 l />zpr t

in  XQ.   Now, if q £ X  such that x    does not follow x    in  XQ,  let ¿(i?)  be an

open set containing q  which is contained in an element of //.   If q £ X  such

that x    follows x ,  let ¿(t?)  be an open set containing  q  which is contained

in an element of H and which does not intersect \p £ X\x    precedes x    or

x    is x;!.   If K = \g(q)\q £ X],  then   K has the desired properties.

Claim A.   X  does not have a point countable base.   By the proof of [8,

Theorem l], each locally separable Moore space with a point countable base

is metrizable.   This completes the proof.

Theorem 2.   There exists a Moçre space with a point countable base that

is not metacompact.

Proof.   Denote by  XQ   a well-ordered uncountable subset of the x-axis

such that each initial segment is countable.   Let  T,   denote the usual topol-

ogy on   X.   and let T,  denote the collection of final segments of Xn.   Now,

let T denote the supremum of T,   and T       The space (X0, T)   was given in

[2] as an example of a hereditarily  Lindelöf, first countable  T2-space which

is not separable.   For each point x £ X     and each  i,  let  u .(x) = \y £ XAy £

(x — 1/z, x + I/2)  in  T,   and either x is y  or x precedes y  in the well-order-

ing of X„ 1.   Then for each  x £ X„,   u Ax), u Ax), • . •  is a local base for x in

(Xfl, T).   As in the proof of Theorem 1, denote by S,   a copy of XQ   and for

each positive integer z,  denote by S.,   ..   a unique copy of XQ   distinct from

S..   Let X = S,U (U°liS(i  ¿O  and for each  p £ X,  denote by  x    the element

of Xn  which is identified with p.   If p £ X  and 7  is a positive integer, define

g Up)  as follows: (1) If p 6 S. j  -   for some  i,  let g.(p) = \pi   (2) If p 6 S v
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let gj(p) = \p\u \q £S(1>0IZ' > / and xq £u.(xp) in (XQ, T)î. Again.it fol-

lows that if G¿ = \g.(p)\p £ X and / > z i for each i, then G v G 2, ••-isa

development for the Moore space X.

Claim 1.   X  has a point countable base.   Observe that for each p £ X

and each  z,  if p £ g (q)  fot some  q £ X,  then x    is x    or x    precedes x

in the well-ordering of XQ.   Hence, each point p oí X is contained in at

most countably many elements of G,.

Claim 2.  X is not metacompact.   For suppose that H is a point finite open

covering of X  which refines  G,.   Note that each element of H  contains at

most one point of S,,  and since S,   is uncountable, there exists a positive

integer n  such that  K = \p £ S. \g ip) is contained in an element of //! is uncount-

able.   Consider M - \x   £ XQ\q £ K\.  Since M is uncountable, by [5, Chapter 1,

Theorem 6], there exists a point x £ M  such that x is a limit point with re-

spect to  Tj  of \x    £ M\x    precedes x in the well-ordering of XA.   But, it

follows that there exists a point  r £ S,,   ..   such that x   = x and r is contained
r (1,2) r

in infinitely many elements of  H.   This completes the proof.
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