RIESZ SEMINORMS WITH FATOU PROPERTIES

C. D. ALIPRANTIS

ABSTRACT. A seminormed Riesz space L_{ρ} satisfies the σ -Fatou property (resp. the Fatou property) if $\theta \leq u_n \uparrow u$ in L (resp. $\theta \leq u_\alpha \uparrow u$ in L) implies $\rho(u_n) \uparrow \rho(u)$ (resp. $\rho(u_\alpha) \uparrow \rho(u)$). The following results are proved:

- (i) A normed Riesz space L_{ρ} satisfies the σ -Fatou property if, and only if, its norm completion does and L_{ρ} has (A, 0).
- (ii) The quotient space L_{ρ}/I_{ρ} has the Fatou property if L_{ρ} is Archimedean with the Fatou property. $(I_{\rho} = \{u \in L \colon \rho(u) = 0\}_{\bullet})$
- (iii) If L_{ρ} is almost σ -Dedekind complete with the σ -Fatou property, then L_{ρ}/I_{ρ} has the σ -Fatou property.

A counterexample shows that (iii) may be false for Archimedean Riesz spaces.

1. Riesz seminorms. For notation and terminology not explained below we refer the reader to [5]. A seminormed Riesz space L_{ρ} is a Riesz space L equipped with a seminorm ρ satisfying $\rho(u) \leq \rho(v)$ whenever $|u| \leq |v|$ holds in L.

For seminormed Riesz spaces $\,L_{\rho}$ the following properties were introduced:

- (A, 0): $u_n \downarrow \theta$ in L and $\{u_n\}$ is a ρ -Cauchy sequence implies $\rho(u_n) \to 0$.
- (A, i): $u_n \downarrow \theta$ in L implies $\rho(u_n) \to 0$.
- (A, ii): $u_a \downarrow \theta$ in L implies $\rho(u_a) \rightarrow 0$.

Following Luxemburg and Zaanen [4, Notes II and XIII] we also have:

Definition 1.1 (σ -Fatou property). A seminormed Riesz space L_{ρ} satisfies the σ -Fatou property whenever $\theta \leq u_n \uparrow u$ in L implies $\rho(u_n) \uparrow \rho(u)$. (Fatou property). A seminormed Riesz space L_{ρ} satisfies the Fatou property whenever $\theta \leq u_a \uparrow u$ in L implies $\rho(u_a) \uparrow \rho(u)$.

Obviously the Fatou implies the σ -Fatou, (A, i) implies the σ -Fatou and (A, ii) implies the Fatou property. Also the σ -Fatou implies the (A, 0) property. Indeed, if $\{u_n\}$ is a ρ -Cauchy sequence with $u_n \downarrow \theta$ in L, then

Received by the editors September 14, 1973.

AMS (MOS) subject classifications (1970). Primary 46A40; Secondary 46B99.

Key words and phrases. Riesz spaces, σ -Fatou property, norm completion, quotient Riesz spaces.

 $\theta \leq u_m - u_n \uparrow_{n \geq m} u_m$ in L, for each fixed m, and hence $\rho(u_m - u_n) \uparrow_{n \geq m} \rho(u_m)$. This implies $\rho(u_n) \to 0$.

Example 1.2. (i) Let L be the Riesz space of all real sequences which are eventually constant. Let $\rho(u) = |u(\infty)| + \sup\{|u_n|: n = 1, 2, \cdots\}$ for all $u \in L$. $(u(\infty) = u(n)$ for all sufficiently large n.) Note that the σ -Fatou property does not hold in L_{ρ} . However L_{ρ} does satisfy the (A, 0) property.

- (ii) Let L be as in (i) and let $\rho(u) = \sup\{|u(n)|: n = 1, 2, \cdots\}$ for all u. Then L_{ρ} is noncomplete with the Fatou property. Note that (A, i) does not hold.
- (iii) Let L be the Riesz space of all bounded real valued Lebesgue measurable functions defined on [0, 1], with $f \le g$ if $f(x) \le g(x)$ for all $x \in [0, 1]$. Let $\rho(u) = \int_0^1 |u(x)| \, dx + \sup\{|u(x)|: x \in [0, 1]\}$ for all $u \in L$. Note that L is ρ -complete with the σ -Fatou property but without the Fatou property.
- (iv) The cartesian product of the spaces in (ii) and (iii) with the product norm gives a noncomplete normed Riesz space without the Fatou and (A, i) properties, but with the σ -Fatou property. \square

We recall that a Riesz subspace L of a Riesz space M is said to be order dense in M if $\sup\{v \in L \colon \theta \leq v \leq u\} = u$ holds in M for all $u \in M^+$. If M is Archimedean (and hence so is L) then the universal completion of M [5, pp. 338-341] equally serves as the universal completion of L; consequently M can be considered as a Riesz subspace of the universal completion of L. Now, if L_ρ is a normed Riesz space with (A, 0) then L_ρ is order dense in its norm completion \overline{L}_ρ [3, Theorem 61.5, p. 652] and so \overline{L}_ρ "seats" in the universal completion of L as an order dense Riesz subspace. This observation will be used in the next theorem.

Theorem 1.3. If the normed Riesz space L_{ρ} satisfies the σ -Fatou property, then we have:

- (i) The norm completion \overline{L}_{ρ} of L_{ρ} satisfies the σ -Fatou property.
- (ii) $\rho(u) = \inf \{ \lim \rho(u_n) : \{ u_n \} \subseteq L^+, u_n \uparrow \text{ and } u_n \land |u| \uparrow |u| \text{ in } \overline{L}_{\rho} \}, \text{ for every } u \text{ in } \overline{L}_{\rho}.$

Proof. Let K be the universal completion of L [5, Theorem 50.8, p. 340]. Define λ on K by the formula:

$$\lambda(u) = \inf \{ \lim \rho(u_n) : \{u_n\} \subseteq L^+; \ u_n \uparrow \text{ and } u_n \land |u| \uparrow |u| \text{ in } K \}$$
 with $\inf \emptyset = +\infty$. Then we have:

(i) $\lambda(u) = \rho(u)$ for all u in L.

To verify (i) use the σ -Fatou property of ρ .

- (ii) $\lambda(u) = \lambda(|u|)$ for all u in K, and $\theta \le u \le v$ in K implies $\lambda(u) \le \lambda(v)$.
- (iii) $\lambda(u) \ge 0$ for all u in K and $\lambda(u) = 0$ implies $u = \theta$.

To see (iii) use the order density of L in K.

- (iv) $\lambda(u+v) \leq \lambda(u) + \lambda(v)$, $\lambda(\alpha u) = |\alpha|\lambda(u)$ for all u, v in K and all α
 - (v) If $\{u_n\} \subseteq L^+$ and $\theta \le u_n \upharpoonright u$ in K, then $\rho(u_n) \upharpoonright \lambda(u)$.
- (vi) Let $U = \{u \in K^+: \theta \le u_n \uparrow u, \text{ for some sequence } \{u_n\} \subseteq L^+\}$. Assume $\theta \le u_n \uparrow$ in K, $\{u_n\} \subseteq U$ and $\lambda(u_n) \uparrow \alpha < +\infty$. Then $\theta \le u_n \uparrow u$ in K and $\lambda(u) = \alpha$ for some u in U.

To see (vi) pick $\{u_{n,k}\colon k=1,\,2,\cdots\}\subseteq L^+$ such that $u_{n,k}\uparrow_k u_n$ $(n=1,\,2,\cdots)$. Define $w_n=\sup\{u_{i,n}\colon i=1,\cdots,n\}\in L^+$ $(n=1,\,2,\cdots)$ and note that $\rho(w_n)\le\alpha$ for all n. Now, let $\theta< v\in L$. Pick $m\in N$ such that $m\rho(v)=\rho(mv)>\alpha$, and observe that $w_n\wedge mv\uparrow mv$ implies $\rho(mv)\le\alpha$. So, $\sup\{w_n\wedge mv\colon n=1,\,2,\cdots\}< mv$. This observation implies $\theta\le w_n\uparrow u$ in K [2, Proposition 1, p. 342]. (Since E is order dense in $C_\infty(X)$, observe that Fremlin's proof works if we replace the assumption "for every x>0 in $C_\infty(X)$ " by "for every x>0 in E".) Thus $\theta\le w_n\uparrow u$ and $u\in U$. Now, combine (v) with the relation $w_n\le u_n$ for all n to obtain $\theta\le u_n\uparrow u$ and $\lambda(u)=\alpha$.

(vii) Let $\theta \le u$, $\lambda(u) < +\infty$ and let $\epsilon > 0$. Then there exists $\nu \in U$, $u \le \nu$ such that $\lambda(\nu) \le \lambda(u) + \epsilon$.

To verify (vii), pick $\{u_n\}\subseteq L^+$, $u_n\uparrow$, $u_n \wedge |u|\uparrow |u|$ and such that $\lim \rho(u_n) \leq \lambda(u) + \epsilon$. As in case (vi) note that $u_n\uparrow v$ in K for some v of U. Now use (v) to obtain $\lambda(v) \leq \lambda(u) + \epsilon$.

(viii) Let $L_{\lambda} = \{u \in K: \lambda(u) < +\infty\}$. Then L_{λ} is a complete normed Riesz space.

For (viii) use (vii) and a routine argument to show that L_{λ} satisfies the Riesz-Fischer property and hence it is λ -complete [4, Theorem 26.3, Note VIII, p. 105].

(ix) The closure of L_{ρ} in L_{λ} , \overline{L}_{ρ} , is the norm completion of L_{ρ} . Now, let $\theta \leq u_n \uparrow u$ in \overline{L}_{ρ} . Since L is order dense in K, $u_n \uparrow u$ also holds in K. Given $\epsilon > 0$, pick an element u_0 in \overline{L}_{ρ} , $u \leq u_0$, $u_0 \in U$ with $\lambda(u_0 - u) < \epsilon$ (see [3, Theorem 60.3, p. 648]). Similarly pick v_n in \overline{L}_{ρ} , $u_n \leq v_n \leq u_0$, $\lambda(v_n - u_n) \leq \epsilon/2^{n+1}$ and $v_n \in U$, $n = 1, 2, \cdots$. Put $w_n = \sup\{v_i : i = 1, \cdots, n\}$ $(n = 1, 2, \cdots)$ and note $\lambda(w_n - u_n) \leq \epsilon$ and $u_n \leq w_n \leq u_0$ for all n. Hence $w_n \uparrow u_1 \leq u_0$ in L_{λ} and so $u \leq u_1 \leq u_0$ in L_{λ} . But then $\lambda(u) \leq \lambda(u_1) = \lim \lambda(w_n) \leq \lim \lambda(u_n) + \epsilon$ for all $\epsilon > 0$. Hence $\lambda(u_n) \uparrow \lambda(u)$, i.e.,

 \overline{L}_{ρ} satisfies the $\sigma\textsc{-Fatou}$ property. Part (ii) follows immediately from the above construction. \Box

Corollary 1.4. Let L_{ρ} be a normed Riesz space with norm completion \overline{L}_{ρ} . Then the following statements are equivalent.

- (i) L_o satisfies the σ-Fatou property.
- (ii) \vec{L}_{ρ} satisfies the σ -Fatou property and L_{ρ} has (A, 0).

Proof. To see that (ii) implies (i) use Theorem 61.5 of [3, p. 652]. \Box For $L = C_{[0,1]}$ and $\rho(u) = \int_0^1 |u(x)| dx$ we have $\overline{L}_\rho = L_1([0,1])$. Note that \overline{L}_ρ satisfies the σ -Fatou property (in fact the (A, ii) property). However, L_ρ does not satisfy the (A, 0) property [5, Exercise 18.14(i), p. 104].

We close this section recalling a notion useful for the next section. A Riesz space L is called almost σ -Dedekind complete if it can be embedded as a super order dense Riesz subspace of a σ -Dedekind complete Riesz space K, i.e., if L is a Riesz subspace of K (more precisely L is Riesz isomorphic to a Riesz subspace of K) such that for every $\theta \le u \in K$, there exists a sequence $\{u_n\} \subseteq L$ with $\theta \le u_n \uparrow u$ in K (see [1]).

2. The quotient Riesz space L_{ρ}/I_{ρ} . The null ideal of a given seminormed Riesz space L_{ρ} is denoted by I_{ρ} , i.e., $I_{\rho} = \{u \in L : \rho(u) = 0\}$. It is evident that I_{ρ} is a σ -ideal (resp. a band) if ρ satisfies the σ -Fatou property (resp. the Fatou property). It is also obvious that the quotient Riesz space L_{ρ}/I_{ρ} becomes a normed Riesz space under the norm $[\rho]$ ([u]) = $\rho(u)$. ([u] denotes the equivalence class of u.)

Question: If L_{ρ} satisfies the σ -Fatou property, does the normed Riesz space L_{ρ}/l_{ρ} satisfy the σ -Fatou property?

The next theorem gives a condition for the answer to be affirmative.

Theorem 2.1. Assume that the seminormed Riesz space L_{ρ} satisfies the σ -Fatou property and that L is almost σ -Dedekind complete. Then the normed Riesz space L_{ρ}/I_{ρ} satisfies the σ -Fatou property.

Proof. Let K be a σ -Dedekind complete Riesz space containing L as a super order dense Riesz subspace. We can assume that the ideal generated by L is all of K. Given $u \in K$ pick $\{u_n\} \subseteq L$ with $\theta \le u_n \uparrow |u|$ in K and define $\lambda(u) = \lim \rho(u_n)$. Note that $\lambda(u)$ is independent of the sequence chosen and that λ is a Riesz seminorm of K with the σ -Fatou property and with $\lambda = \rho$ on L.

Let L/I_{λ} be the canonical image of L in K_{λ}/I_{λ} . Observe that L_{ρ}/I_{ρ}

is Riesz isomorphic to L/I_{λ} (the mapping $[u] = u + I_{\rho} \rightarrow u + I_{\lambda} = [u]$ does it) and that the quotient norm $[\rho]$ on L_{ρ}/I_{ρ} and the norm induced from K_{λ}/I_{λ} to L/I_{λ} coincide. Now let $[\theta] \leq [u_n] \uparrow [u]$ in L_{ρ}/I_{ρ} , so $[\theta] \leq [u_n] \uparrow [u]$ holds also in L/I_{λ} . We can assume $\theta \leq u_n \uparrow \leq u$ in L, so $\theta \leq u_n \uparrow v \leq u$ holds in K and hence $[\theta] \leq [u_n] \uparrow [v]$ in K_{λ}/I_{λ} [5, Theorem 18.11, p. 103]. Since L/I_{λ} is order dense in K_{λ}/I_{λ} , $[u_n] \uparrow [u]$ also holds in K_{λ}/I_{λ} and hence [v] = [u], so $\lambda(v) = \lambda(u) = \rho(u)$.

Thus $[\rho]([u_n]) = \rho(u_n) = \lambda(u_n) \uparrow \lambda(v) = \rho(u) = [\rho]([u])$, and the proof is finished. \Box

Question: If we replace the almost σ -Dedekind completeness of L by Archimedeanness is Theorem 2.1 still true?

The following example shows that the answer is negative in general.

Example 2.2. Let L be the Archimedean Riesz space $C(\mathbf{R}_{\infty})$. (\mathbf{R}_{∞} is the one point compactification of the real numbers considered with the discrete topology (see [5, Example (v), p. 141]). Note that L is not almost σ -Dedekind complete. Now, define the Riesz seminorm ρ on L, by $\rho(u) = |u(\infty)| + \sup\{|u(n)|: n = 1, 2, \cdots\}$. Note that ρ satisfies the σ -Fatou property but not the Fatou property. (In fact ρ satisfies the (A, i) property.) Note also that I_{ρ} is a band.

Now, let $u_n = \chi_{\{1,\dots,n\}}$, $n = 1, 2, \dots$. Then $\theta \le u_n \uparrow \le e$ in L (e(x) = 1 for all $x \in \mathbb{R}$) and $\rho(u_n) = 1$ for all n. It is easily seen that $[\theta] \le [u_n] \uparrow [e]$ holds in L_{ρ}/I_{ρ} . But

$$[\rho]([u_n]) = \rho(u_n) = 1 \ ? [\rho]([e]) = \rho(e) = 2.$$

Hence L_{ρ}/I_{ρ} does not satisfy the $\sigma ext{-Fatou property.}$ \square

A better situation holds if ρ satisfies the Fatou property. The next theorem tells us that L_{ρ}/l_{ρ} satisfies the Fatou property if L_{ρ} does.

Theorem 2.3. Let L_{ρ} be an Archimedean seminormed Riesz space with the Fatou property. Then the normed Riesz space L_{ρ}/l_{ρ} satisfies the Fatou property.

Proof. Repeat the proof of Theorem 2.1 replacing K by L^{δ} , the Dedekind completion of $L.\Box$

REFERENCES

- 1. C. D. Aliprantis and Eric Langford, Almost σ -Dedekind complete Riesz spaces and the main inclusion theorem, Proc. Amer. Math. Soc. 44(1974), 421-426.
- 2. D. H. Fremlin, On the completion of locally solid vector lattices, Pacific J. Math. 43 (1972), 341-347.

- 3. W. A. J. Luxemburg, Notes on Banach function spaces. XVIa, Nederl. Akad. Wetensch. Proc. Ser. A 68 = Indag. Math. 27 (1965), 646-657. MR 32 #6202e.
- 4. W. A. J. Luxemburg and A. C. Zaanen, Notes on Banach function spaces. II, VIII, XIII, Nederl. Akad. Wetensch. Proc. Ser. A 66 = Indag. Math. 25 (1963), 148-153; ibid. A 67 = Indag. Math. 26 (1964), 104-119, 530-543. MR 26 #6723b; 28 #5324b; 30 #3381b.
 - 5. ——, Riesz spaces. I, North-Holland, Amsterdam, 1971.

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA 91109

Current address: STD Research Corporation, 150 E. Foothill, Arcadia, California 91006 and Department of Mathematics, Occidental College, Los Angeles, California 90041