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RIESZ SEMINORMS WITH FATOU PROPERTIES

C. D. ALIPRANTIS

ABSTRACT.    A seminormed Riesz space   L ~ satisfies the cr-Fatou

property (resp. the Fatou property) if  8 < u   t it in  L  (resp. 8 < u^î u  in  L)

implies   p(u )  T p(u) (resp. p(u   )   T p(u)). The following results are proved:

(i) A normed Riesz space   L „ satisfies the cr-Fatou property if, and

only if, its norm completion does and  L „ has  (A, 0).

(ii) The quotient space  L „/Ip has the Fatou property if  Lp is Archi-

medean with the Fatou property.  (I„ — \ueL: p(u) = 0¡.)

(iii) If L p is almost cr-Dedekind complete with the cr-Fatou property,

then  L „/Ip has the cr-Fatou property.

A counterexample shows that   (iii) may be false for Archimedean Riesz

spaces.

1.   Riesz seminorms.    For notation and terminology not explained below

we refer the reader to  [5].   A seminormed Riesz space  L    is a Riesz space

L  equipped with a seminorm p satisfying piu) < piv) whenever   |a| < \v\

holds in L.

For seminormed Riesz spaces   L    the following properties were intro-

duced:

(A, 0):  a    I 6   in L and !a  } is a p-Cauchy sequence implies piu ) —» 0.

(A, i):   a   I   8 in L  implies piu ) —> 0.
V      '      ' 72 r r        72

(A, ii): ua i 0 in L  implies p(u¿) —> 0.

Following Luxemburg and Zaanen  [4, Notes   II and XIIl] we also have:

Definition  1.1     (cr-Fatou property).   A seminormed Riesz space  L    sat-

isfies the  a-Fatou property whenever 6 < u   \ u  in  L  implies  p(u ) ] p(u).

(Fatou property).   A seminormed Riesz space  L    satisfies the Fatou proper-

ty whenever 6 < ua\ u in L   implies  p(u  ) Î p(u).

Obviously the Fatou implies the  a-Fatou,   (A, i) implies the cr-Fatou

and  (A, ii) implies the Fatou property.   Also the  tr-Fatou implies the  (A, 0)

property.   Indeed, if fa   S is a  p-Cauchy sequence with a    I   6  in L,  then
77 ' J * 72
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6 < u    - u    \ a     in  L,  for each fixed 222,  and hence  p(a    - a  ) ]
—      777 77       77>772       777 ' ' r        777 77 72 2 727

p(a   ).   This implies  p(a ) —> 0.r        777 r r        72

Example  1.2.   (i)   Let L be the Riesz space of all real sequences which

are eventually constant.   Let p(a) = |a(oo)| + supf |a   |: n = 1, 2, • • • ! for all

u £ L.   (a(o.) = uin) tot all sufficiently large  22.)   Note that the   a-Fatou prop-

erty does not hold in L .   However L    does satisfy the  (A, 0) property.

(ii) Let L be as in (i) and let p(a) = sup!|a(//)|: n = 1, 2, • • • I for all

a. Then L is noncomplete with the Fatou property. Note that (A, i) does

not hold.

(iii)   Let  L  be the Riesz space of all bounded real valued Lebesgue

measurable functions defined on  [O, l],  with f < g  it f(x) < g(x) tot all x £

[0, 1].   Let p(a) = /J \u(x)\dx + supi|a(x)|: x £ [O, l]! for all u £ L.   Note

that  L  is  p-complete with the  a-Fatou property but without the Fatou prop-

erty.

(iv)  The cartesian product of the spaces in (ii) and (iii) with the pro-

duct norm gives a noncomplete normed Riesz space without the Fatou and

(A, i) properties, but with the  a-Fatou property. D

We recall that a Riesz subspace  L  of a Riesz space  M is said to be

order dense in M  if  sup if £ L: 9 < v < u\ = u holds in  M tot all  u £ M   .If

M is Archimedean (and hence so is  L) then the universal completion of M

[5, pp. 338—341] equally serves as the universal completion of L; conse-

quently M can be considered as a Riesz subspace of the universal comple-

tion of  L.   Now, if  L     is a normed Riesz space with (A, 0) then  L     is

order dense in its norm completion  L     [3, Theorem 61.5, p. 652] and so  L

"seats" in the universal completion of  L as an order dense Riesz subspace.

This observation will be used in the next theorem.

Theorem  1.3.   // the normed Riesz space  L    satisfies the  a-Fatou prop-

erty, then we have;

(i)   The norm completion L    of L    satisfies the  a-Fatou property.

(ii) p(a) = inf Slim p(u ): \u  ÍC L , u   \   and a    A lai Î |a|   in L \, for
r r      n n  _       1      n „ilill P      '

every a  in  L .
P

Proof.   Let  K be the universal completion of L  [5, Theorem 50.8, p.

34O].   Define  À  on  K by the formula:

X(u) = inf llim p(a ) : !a  \ C L  ; u   Î  and a   A |a| Î lal  in K\r        77 77— *72 77 llill

with  inf 0= +00.   Then we have:

(i)   A(a) = p(a) for all a  in  L.
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To verify (i) use the  a-Fatou property of p.

(ii)   A(a) = A(|a|) for all  a  in  K, and  6 < a < v  in  K implies A(a) < \(v).

(iii) A(a) > 0 for all u in K and A(a) = 0 implies  u = 6.

To see  (iii) use the order density of L  in K.

(iv)  A(a + v) < A(a) + \(v), X(au) = |a|A(a) for all a, v  in K and all a

in   R.

(v)    If \u  \ C L+ and  8 < a   î a in K, then p(a ) î A(a).v/ 77— —       77 ' r72

(vi)   Let  U = \u£K: 6<u   î a, for some sequence [a  ! Ç L !.

Assume  8 < u  î  in K, \u  \ C U and A(a ) î a< +oo.   Then 0 < a    î a in  K
—      72 ' ' 72     — n —      72    '

and  A(a) = a for some  u in  (i.

To see  (vi) pick fa      : k = 1, 2, • • • ! Ç L    such that a       î, a    (« =
1% 9 Kj ft 9 Km K* it

1, 2, • • • ).   Define w   = supla.    :i =1."-,b| el    (k = 1, 2, • • • ) and note'       ' 77 r 2,72 ' '       '

that p(w  ) < a fot all n.   Now, let 8 < v £ L.   Pick m £ N such that mp(v) =

pimv) > a, and observe that w   A 22212 T 22212   implies   p(mv)   <   a.   So,

sup!»    A mv: n = 1, 2, • • • I < mv.   This observation implies  6 <w    T a  in

K [2, Proposition 1, p. 342].   (Since E is order dense in CM(X), observe

that Fremlin's proof works if we replace the assumption  "for every x > 0

in C^OO" by  "for every x > 0 in E".)   Thus  6 < wn \ u and  u £ U.   Now,

combine   (v) with the relation w    < u    tot all n to obtain  6 < u    la and
72—72 —       77

A(a) = a.

(vii)   Let  8 < u, X(u) < +oe and let  e > 0.   Then there exists  v £ U,

u < v such that A(f ) < A(a) + e.

To verify  (vii),  pick \u  \ C L ,  u   î ,   a    A |a| f |a|  and suchthat

limp(a  ) < A(a) + e.   As in case   (vi) note that  a   î v  in  K tot some  v  of  (7.r     n   — x 72

Now use  (v) to obtain A(t>) < A(a) + e.

(viii)   Let Lx = \u € K: A(a) < +œj.   Then L     is a complete normed

Riesz space.

For (viii) use (vii) and a routine argument to show that L. satisfies

the Riesz-Fischer property and hence it is A-complete [4, Theorem 26.3,

Note VIII, p. IO5].

(ix)   The closure of L    in Lx, L     is the norm completion of L .

Now, let  8 < a    T u in L.   Since  L  is order dense in  K, u   î a also
—      72/0 '77

holds in  K.   Given  e > 0,  pick an element  a    in  L ,  u < a   ,  u    £ (J with

A(aQ- a) < f (see [3, Theorem 60.3, p. 648]).   Similarly pick vn in L    a^ <

v„ < "n' ^„ ~ UJ < e/2n+ï  and v    £ U, n = 1, 2, • • •.   Put«/   =supi>.:

i = 1, • • • , n\ (n = 1, 2, • • • ) and note  \(w    - a  ) < t and  a    < 7//    < a„  for
7272— 72—72—0

all n.   Hence ^ I   at < uQ  in Lx and so a < aj < uQ  in Lx.   But then

A(a) < A(a  ) = limA(2^  ) < limA(a ) + t for all e > 0.   Hence  A(a  ) î A(a), i.e.,
1 n   — n n *
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L    satisfies the  a-Fatou property.   Part  (ii) follows immediately from the

above construction. D

Corollary  1.4.   Let  L„ be a normed Riesz space with norm completion

L .    Then the following statements are equivalent.

(i)   L    satisfies the  a-Fatou property.

(ii) L    satisfies the  a-Fatou property and L    has  (A, 0).

Proof.   To see that  (ii) implies  (i) use Theorem  61.5 of [3, p. 652]. D

For  L = CrQ ^ and p(a )= JQ |a(x)|ax we have   L   = L^tO, l]).   Note

that  L    satisfies the  a-Fatou property (in fact the  (A, ii) property).   How-

ever, L    does not satisfy the (A, 0) property [5, Exercise  18.14(i), p. 104].

We close this section recalling a notion useful for the next section.   A

Riesz space   L  is called almost  a-Dedekind complete if it can be embedded

as a super order dense Riesz subspace of a  a-Dedekind complete Riesz space

K,  i.e., if  L  is a Riesz subspace of  K (more precisely L  is Riesz isomor-

phic to a Riesz subspace of  K) such that for every 8 < u £ K, there exists

a sequence  \u   \ C L  with  8<u    } u in  K  (see   [l]).

2.   The quotient Riesz space. L  /I .   The null ideal of a given semi-

normed  Riesz space  L    is denoted by  I ,  i.e.,  /   = \u £ L: p(u) = OS.   It is

evident that  /    is a  a-ideal (resp. a band) if p  satisfies the  a-Fatou proper-

ty (resp. the Fatou property).   It is also obvious that the quotient Riesz

space  L /I    becomes a normed Riesz space under the norm  [p] ([a]) = p(a).

([a] denotes the equivalence class of a.)

Question:    if  L    satisfies the  a-Fatou property, does the normed Riesz

space   L /I    satisfy the  a-Fatou property?

The next theorem gives a condition for the answer to be affirmative.

Theorem  2.1.   Assume that the seminormed Riesz space  L    satisfies

the  a-Fatou property and that  L  is almost  a-Dedekind complete.    Then the

normed Riesz space  L /I   satisfies the  a-Fatou property.

Proof.   Let  K be a  a-Dedekind complete Riesz space containing   L  as

a super order dense Riesz subspace.   We can assume that the ideal generated

by  L  is all of  K.   Given  u £ K pick \u  \ C L  with  8 < u   j  |a|  in  K and

define  A(a) = limp(a  ).   Note that A(a)  is independent of the sequence chos-

en and that A is a Riesz seminorm of  K with the  a-Fatou property and with

A = p on L.

Let  L/I.   be the canonical image of  L  in  K./Iy    Observe that  L /I
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is Riesz isomorphic to  L//x (the mapping   [a] = a + / —> u + /. = [a] does it)

and that the  quotient norm  [p] on  L /I   and the norm induced from  K\AL  to

L//x coincide.   Now let   [8] < [uj ] [a]  in  L  /I     so  [8] < [a J T  [a] holds

also in L//>.   We can assume  8 < u   î < a in  L,  so  8 < u   T   v < a holds
A —      n   '    — —      n   i —

in K and hence  [(9] < [aj ] [v] in Kx//X [5, Theorem  18.11, p. IO3L   Since

L//x is order dense in  K./I^,  [a ] ] [a] also holds in  K\/l\ and hence

[12] = [a],  so A(f) = A(a) = p(a).

Thus  [p]([a  ]) = p(a  ) = \(uj ] \(v).= p(u) = [p]([a]), and the proof

is finished. □

Question:   If we replace the almost a-Dedekind completeness of L by

Archimedeanness is Theorem 2.1  still true?

The following example shows that the answer is negative in general.

Example 2.2.   Let   L   be  the  Archimedean  Riesz  space  CtR^).   (R^

is the one point compactification of the real numbers considered with the

discrete topology (see [5, Example  (v), p. 14l]).  Note that  L  is not almost

a-Dedekind complete.   Now, define  the  Riesz  seminorm   p   on   L, by

p(u) = \u(aa)\ + sup \\u(n)\: n = I, 2, •• •}.   Note that p satisfies the a-Fatou

property but not the Fatou property.   (In fact p satisfies the  (A, i) proper-

ty.)  Note also that I   is a band.

Now, let a = X ¡1 ... h n = I, 2, • • • . Then 8 < u î < e in L (e(x) =

1   for all x £ R) and  p(a  ) = 1  for all 22.   It is easily seen that [8] < [a ] T [e]
'72 ' —        77

holds in  L   //   .  But
P    P

[p]([aj) = p(u) = 1 t [p]([e])  = p(e) = 2.

Hence  L  /I   does not satisfy the  a-Fatou property. □

A better situation holds if p satisfies the Fatou property.   The next

theorem tells us that  L /I   satisfies the Fatou property if  L    does.

Theorem 2.3. Let L be an Archimedean seminormed Riesz space with

the Fatou property. Then the normed Riesz space L /I satisfies the Fatou

property.

Proof.   Repeat the proof of Theorem 2.1 replacing  K by L , the Dede-

kind completion of  L.O
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