BOUNDED SOLUTIONS OF THE EQUATION $\Delta u = pu$ ON A RIEMANNIAN MANIFOLD

YOUNG K. KWON

ABSTRACT. Given a nonnegative C^1 -function p(x) on a Riemannian manifold R, denote by $B_p(R)$ the Banach space of all bounded C^2 -solutions of $\Delta u = pu$ with the sup-norm. The purpose of this paper is to give a unified treatment of $B_p(R)$ on the Wiener compactification for all densities p(x). This approach not only generalizes classical results in the harmonic case ($p \equiv 0$), but it also enables one, for example, to easily compare the Banach space structure of the spaces $B_p(R)$ for various densities p(x). Typically, let $\beta(p)$ be the set of all p-potential nondensity points in the Wiener harmonic boundary Δ , and $C_p(\Delta)$ the space of bounded continuous functions f on Δ with $f|\Delta - \beta(p) \equiv 0$.

Theorem. The spaces $B_p(R)$ and $C_p(\Delta)$ are isometrically isomorphic with respect to the sup-norm.

Throughout this paper R is an orientable Riemannian C^{∞} -manifold of dim ≥ 2 , and p(x) is a nonnegative C^1 -function on R. Denote by $B_p(R)$ the space of bounded C^2 -solutions u on R of the elliptic equation $\Delta u = pu$, where Δu is the Laplacian of u on R. As one studies bounded harmonic functions on the Wiener compactification, the space $B_p(R)$ has been investigated on the so-called Wiener p-compactification (cf. Loeb and Walsh [2], Wang [9]). However, their consideration restricts one to construct different compactifications for different densities p(x).

The purpose of the present paper is to give a unified treatment of the spaces $B_p(R)$ on the Wiener compactification R^* for all densities p(x). This approach, for instance, enables one to easily compare the linear space structure of the spaces $B_p(R)$ for various densities p(x). Typically, let $\beta(p)$ be the set of *p*-potential nondensity points *x* in the Wiener harmonic boundary Δ (see below for its definition), and $C_p(\Delta)$ the space of bounded

Copyright © 1974, American Mathematical Society

Received by the editors May 31, 1973 and, in revised form, October 24, 1973. AMS (MOS) subject classifications (1970). Primary 30A48.

Key words and phrases. Riemannian manifold, p-potential nondensity point, Wiener compactification, Wiener harmonic boundary, Green's potential, Fredholm integral equation, Perron family.

continuous functions f on Δ such that $f|\Delta - \beta(p) \equiv 0$. Then $B_p(R)$ and $C_p(\Delta)$ are isometrically isomorphic with respect to the sup-norm.

For the notation and terminology we refer the reader to Sario and Nakai [8, Chapter 4].

The author is very grateful to the referee for valuable improvements.

1. First we observe a simple fact.

Lemma. Every $u \in B_p(R)$ is continuously extendable to the Wiener compactification R^* of R. Furthermore u has the property $||u|| = \max_{\Delta} |u|$, where $||\cdot||$ is the sup-norm and Δ is the Wiener harmonic boundary.

A point $x \in \Delta$ will be called a *p*-potential nondensity point if there exists an open neighborhood U^* of x in R^* such that

$$\sup_{a \in U} \int_U G_U(a, y) p(y) \, dy < \infty,$$

where $U = U^* \cap R$, $G_U(a, y)$ is the (harmonic) Green's function for U, and dy is the (Riemannian) volume element of R. Denote by $\beta(p)$ the set of all p-potential nondensity points in Δ (cf. Nakai [5]).

For $p \neq 0$ the above maximum principle is too crude for our purpose:

Theorem. Every $u \in B_p(R)$ has the property $||u|| = \max_{\beta(p)} |u|$.

Proof. It suffices to show that $u \equiv 0$ on $\Delta - \beta(p)$. To the contrary suppose that $u(x) = 2\epsilon > 0$ for some $x \in \Delta - \beta(p)$. Choose an open neighborhood U^* of x in \mathbb{R}^* such that $u > \epsilon$ on U^* . Set $U = U^* \cap \mathbb{R}$. We may modify U to have a smooth ∂U . Let $\{\Omega_n\}_1^{\infty}$ be a "regular" exhaustion of U. By Stokes' formula

$$u(z) = h_n(z) - \int_{\Omega_n} G_n(z, y)p(y)u(y) \, dy$$

on Ω_n , where $h_n \in B_0(\Omega_n)$ with $h_n | \partial \Omega_n \equiv u$ and $G_n(z, y)$ is the Green's function for Ω_n . Therefore it is seen that

$$0 \leq \int_{\mathbf{\Omega}_n} G_n(z, y) p(y) u(y) \, dy \leq ||u||$$

on Ω_n . By the monotone convergence theorem, we deduce that

$$\int_U G_U(z, y) p(y) \, dy \leq ||u||/\epsilon$$

on U, a contradiction to the fact that $x \notin \beta(p)$.

2. For a parabolic R, the space $B_p(R) = \{0\}$ or the real number field according as $p \neq 0$ or $p \equiv 0$ (Ozawa [6]). We thus assume that R is hyperbolic. Set

$$H_p B(R) = \{ u \in B_0(R) | u \equiv 0 \text{ on } \Delta - \beta(p) \}.$$

It is not difficult to see that $C_p(\Delta)$ and $H_pB(R)$ are isometrically isomorphic Banach spaces with the sup-norm $\|\cdot\|$.

Theorem. For any density p(x) on R the Banach spaces $B_p(R)$ and $C_{*}(\Delta)$ are isometrically isomorphic. In particular

$$C_{p}(\Delta) = \{ u | \Delta : u \in B_{p}(R) \}.$$

Proof. It suffices to show that every $h \in C_p(\Delta)$ can be extended to a function in $B_p(R)$.

Without loss of generality we may assume that $h \in H_p B(R)$ and $h \ge 0$ on R. Define $v(z) = \sup \{u(z) | u \in F_h\}$, where $F_h = \{u \in B_p(R) | 0 \le u \le h \text{ on } R\}$. Since the class F_h forms a Perron family for $\Delta u = pu$, it follows that $v \in B_p(R)$. We need to prove that $v \equiv h$ on $\beta(p)$.

On the contrary, assume that there exists a point $x \in \beta(p)$ such that $h(x) > \iota(x) \ge 0$. Let ϵ be a positive constant with $\nu(x) < \epsilon < h(x)$. Choose an open neighborhood U^* of x in R^* such that $h > \epsilon > \nu$ on U^* , $U = U^* \cap R$ has smooth ∂U , and $\sup_{a \in U} \int_U G_U(a, y) p(y) dy < \infty$. Take n so large that $\sup_{a \in U} \int_U G_U(a, y) p(y) dy < n$.

For any $\phi \in C(U)$, the space of bounded continuous functions on U, define an integral operator T by

$$(T\phi)(z) = -\frac{1}{n} \int_U G_U(z, y) p(y) \phi(y) \, dy.$$

It is well known (cf. e.g. Miranda [3, p. 25]) that T is a linear operator in C(U) and its operator norm satisfies

$$||T|| \leq \frac{1}{n} \sup_{a \in U} \int_U G_U(a, y) p(y) \, dy < 1.$$

Thus the Fredholm integral equation (I - T)u = k has a unique solution u, where I is the identity operator in C(U) and $k \in B_0(U)$ such that $k | \partial U \equiv 0$, $0 \le k \le h$ on U, and k(x) = h(x). Clearly $u \in B_{n-1p}(U)$, $u \equiv k$ on $(\partial U) \cup$ $(U^* \cap \Delta)$, and $0 \le u \le k$ on U. Extend u to R by setting $u | R - U \equiv 0$ and then construct $u_0 \in B_{n-1p}(R)$ such that $u \le u_0 \le \pi u$ on R. Here πu is the harmonic projection of u on R. Note that $u_0(x) = h(x)$, $u_0 \equiv 0$ on $\Delta - U^*$, and $u_0 \le h$ on R. Let $\{R_i\}_1^\infty$ be a regular exhaustion of R and take $w_i \in B_p(R_i)$ such that $w_i \equiv u_0$ on $R - R_i$. In view of $\Delta u_0 = n^{-1}pu_0 \leq pu_0$ on R, it is not difficult to see that $0 \leq w_i \leq w_{i+1} \leq u_0$ on R and $||w_i|| = ||u_0||$. By Harnack's principle for $\Delta u = pu$, the sequence $\{w_i\}$ converges, uniformly on a compact subset of R, to a function $w \in B_p(R)$, such that $0 \leq w \leq u_0$ on R and $||w|| = ||u_0||$. Since $w \equiv 0$ on $\Delta - U^*$, we conclude that

$$\max_{U^* \cap \Delta} w = ||w|| = ||u_0|| = \max_{U^* \cap \Delta} u_0 \ge u_0(x) = h(x) > \epsilon.$$

In view of $w \in F_b$, $\max_{U^* \cap \Delta} v \ge \max_{U^* \cap \Delta} w > \epsilon$. But this contradicts our choice of U^* : $v < \epsilon$ on U^* .

This completes the proof of our theorem.

3. As an application of our theorem we would like to mention its contribution to the comparison problem of the spaces $B_p(R)$ for various densities p(x). In this vein an elegant result of Royden [7] states: if p(x) and q(x) are two densities such that for some constant $\alpha \ge 1$, $\alpha^{-1}p(x) \le q(x) \le \alpha p(x)$ off some compact subset of R, then $B_p(R)$ and $B_q(R)$ are isometric. Later Nakai [4] found another important criterion: the same conclusion holds if $\int_{R} |p(x) - q(x)| dx < \infty$.

The following result considerably sharpens their conclusions in view of the fact that Δ is topologically "small" in $R^* - R$.

Corollary. Banach spaces $B_p(R)$ and $B_q(R)$ are isometrically isomorphic in each of the following cases:

(i) there exists a constant $\alpha \ge 1$ such that $\alpha^{-1}p(x) \le q(x) \le \alpha p(x)$ in some open neighborhood U^* of Δ in R^* ;

(ii) there exists an open neighborhood U^* of Δ in \mathbb{R}^* such that $\int_{U^* \cap \mathbb{R}} |p(x) - q(x)| \, dx < \infty.$

Proof. In case (i), it is easy to see that $\beta(p) = \beta(q)$. Now assume that condition (ii) holds. Contrary to our conclusion, suppose that there exists a point $a \in \beta(p) - \beta(q)$. In this case there exists a $u \in B_p(R)$ such that 0 < u < 1 on R and u(a) = 1. Since $a \notin \beta(q)$, v(a) = 0 for $v \in B_q(R)$. Choose an open neighborhood V^* of a in R^* such that

$$\sup_{x \in V} \int_{V} G_{V}(x, y) p(y) \, dy < \infty \quad \text{and} \quad \int_{V} |p(x) - q(x)| \, dx < \infty,$$

where $V = V^* \cap R$. It can be shown from the second inequality that

$$\int_V G_V(x, y) |p(y) - q(y)| \, dy < \infty$$

for each $x \in V$. For a "regular" exhaustion $\{\Omega_n\}_1^{\infty}$ of V construct v_n on V such that $v_n \in B_q(\Omega_n)$ and $v_n \equiv u$ on $V - \Omega_n$. Then we can write

$$u(x) = h_n(x) - \int_{\Omega_n} G_n(x, y) p(y) u(y) dy,$$
$$v_n(x) = h_n(x) - \int_{\Omega_n} G_n(x, y) q(y) v_n(y) dy$$

on Ω_n , where $h_n \in B_0(\Omega_n)$ with $h_n | \partial \Omega_n \equiv u$ and $G_n(x, y)$ is the Green's function on Ω_n . Since $0 \leq h_n \leq 1$ and $0 \leq v_n \leq 1$, we may assume that $h_n \to h \in B_0(V)$ and $v_n \to v \in B_n(V)$, uniformly on compact subsets of V. In view of

$$\begin{aligned} |u(x) - v_n(x)| &\leq \int_{\Omega_n} G_n(x, y) |q(y) - p(y)| v_n(y) \, dy \\ &+ \int_{\Omega_n} G_n(x, y) p(y) |v_n(y) - u(y)| \, dy \\ &\leq \int_{\Omega_n} G_V(x, y) [|q(y) - p(y)| + p(y)] \, dy \end{aligned}$$

we conclude that

$$|u(x) - v(x)| \leq \int_V G_V(x, y)[|q(y) - p(y)| + p(y)] dy$$

on V and therefore on $V \cup \{a\}$. Note that all three functions in the above inequality have continuous extensions to V^* . Since the Green's potential vanishes on $V^* \cap \Delta$, we deduce that v(a) = u(a) = 1, a contradiction to the fact that $a \notin \beta(q)$.

REFERENCES

1. C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Ergebnisse der Math. und ihrer Grenzgebiete, Band 32, Springer-Verlag, Berlin, 1963. MR 28 #3151.

2. P. A. Loeb and B. Walsh, An axiomatic approach to the boundary theories of Wiener and Royden, Bull. Amer. Math. Soc. 74 (1968), 1004-1007. MR 38 #2330.

3. C. Miranda, Partial differential equations of elliptic type, Springer, 1970, 370 pp.

4. M. Nakai, The space of bounded solutions of the equation $\Delta u = pu$ on a Riemann surface, Proc. Japan Acad. 36 (1960), 267-272. MR 22 #12216.

5. _____, Dirichlet finite solutions of $\Delta u = pu$, and classification of Riemann surfaces, Bull. Amer. Math. Soc. 77 (1971), 381-385. MR 45 #2162.

6. M. Ozawa, Classification of Riemann surfaces, Kodai Math. Sem. Rep. 4(1952), 63-76. MR 14, 462.

7. H. L. Royden, The equation $\Delta u = Pu$, and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. A.I. no. 271 (1959), 27 pp. MR 22 #12215.

YOUNG K. KWON

8. L. Sario and M. Nakai, *Classification theory of Riemann surfaces*, Die Grundlehren der math. Wissenschaften, Band 164, Springer-Verlag, Berlin and New York, 1970. MR 41 #8660.

9. C. Wang, Quasibounded P-harmonic functions, Doctoral Dissertation, Univ. of California, Los Angeles, 1970, 92 pp.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS, AUSTIN, TEXAS 78712

382