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BOUNDED SOLUTIONS OF THE EQUATION Au = pu

ON A RIEMANNIAN MANIFOLD

YOUNG K. KWON

ABSTRACT. Given a nonnegative C'-function p(x)  on a Riemannian

manifold R, denote by  Bp(R)   the Banach space of all bounded  C^-solu-

tions of Au ■ pu   with the sup-norm.  The purpose of this paper is to give

a unified treatment of Bp(R)  on the Wiener compactification for all den-

sities p(x).  This approach not only generalizes classical results in the

harmonic case (p =0), but it also enables one, for example, to easily

compare the Banach space structure of the spaces  Bp(R)   for various

densities p(x).  Typically, let ß(p) be the set of all p-potential nonden-

sity points in the Wiener harmonic boundary A, and  Cp(A)  the space of

bounded continuous functions f on A with /|A  - ß(p) = 0.

Theorem.   The spaces  Bp(R) and  C/,(A)  are isometrically isomor-

phic with respect to the sup-norm.

Throughout this paper  R  is an orientable Riemannian C°°-manifold of

dim > 2, and  p(x)  is a nonnegative C -function on  R.  Denote by  Bp(R) the

space of bounded C -solutions  a on  R  of the elliptic equation  Aa = pu,

where  Aa  is the Laplacian of a  on   R.  As one studies bounded harmonic

functions on the Wiener compactification, the space  BAR) has been inves-

tigated on the so-called Wiener //-compactification (cf. Loeb and Walsh [2],

Wang [9]).  However, their consideration restricts one to construct different

compactifications for different densities  p(x).

The purpose of the present paper is to give a unified treatment of the

spaces  B (R) on the Wiener compactification  R     for all densities  p(x).

This approach, for instance, enables one to easily compare the linear space

structure of the spaces  BAR) fot various densities  p(x).  Typically, let

ß(p) be the set of //-potential nondensity points  x in the Wiener harmonic

boundary  A (see below for its definition), and  C (A)  the space of bounded
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continuous functions  / on  A  suchthat f\A - ß(p) =0.  Then   B (R) and

C (A)  are isometrically isomorphic with respect to the sup-norm.

For the notation and terminology we refer the reader to Sario and Nakai

[8, Chapter A].

The author is very grateful to the referee for valuable improvements.

1.  First we observe a simple fact.

Lemma.   Every u £ BAR)  is continuously extendable to the Wiener com-

pactification  R     of R.  Furthermore u has the property   ||a|| =maxA|a|, where

H'll   is the sup-norm and A  is the Wiener harmonic boundary.

A point  x £ A will be called a p-potential nondensity point if there

exists an open neighborhood  U    of  x in  R     such that

sup   j     Gv(a, y)p(y) dy < oo,
sell

where   U = U   OR, G.,(a, y) is the (harmonic) Green's function for  U, and

dy is the (Riemannian) volume element of  R.  Denote by  ß(p) the set of all

//-potential nondensity points in  A (cf. Nakai [5]).

For p 4 0  the above maximum principle is too crude for our purpose:

Theorem.  Every u £ B (R) has the property  ||a|| = max^,  ,|a|.
V H\P I

Proof.  It suffices to show that  a = 0  on  A — ß(p).  To the contrary sup-

pose that  a(x) = 2f > 0  for some  x £ A — ß(p).  Choose an open neighborhood

U    of x in  R    such that  a > e on   U . Set   U = U   O R. We may modify   U

to have a smooth dU.  Let  !fi   ff be a "regular" exhaustion of  U.  By Stokes'

formula

u(z) = hn(z) -   f     Gn(z, y)p(y)u(y) dy

on ÇI  , where  h    £ B„(Í2 )  with   h   \dü    = u  and  G (z, y) is the Green's func-
72' 77 0?7 72'72 77,y

tion for iî  .  Therefore it is seen that

lall0< L  GJZ- y)p(y)Ay) dy <
n

on Í2  . By the monotone convergence theorem, we deduce that

fuGu(z,y)p(y)dy<\\u\\/e
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on  U, a contradiction to the fact that  x /. ß(p).

2.  For a parabolic  R, the space  BAR) = )0i or the real number field

according as p 4 0 or p = 0 (Ozawa L6J). We thus assume that R is hyperbolic. Set

HpB(R) = la £ B0(R)\u s 0 on A - ß(p)\.

It is not difficult to see that  C (A) and  H  B(R)  ate isometrically isomorphic

Banach spaces with the sup-norm   ||-||.

Theorem.   For any density  p(x)  on  R  the Banach spaces  BAR) and

C (A) are isometrically isomorphic.  In particular

Cp(A) = \u\A: a e BpiR)\.

Proof.  It suffices to show that every  h £ C (A)  can be extended to a

function in  BAR).

Without loss of generality we may assume that h £ H  B(R)  and  h > 0

on  R.  Define  v(z) = sup \u(z)\u £ Fh\, where  F, = Sa £ B (R)\0 < u < h on

Ri.  Since the class   F,   forms a Perron family for Aa = pu, it follows that

v £ BAR). We need to prove that v = h on ß(p).

On the contrary, assume that there exists a point x £ ß(p) such that h(x) >

v(x) > 0. Let t be a positive constant with v(x) < e < h(x). Choose an open neigh-

borhood U   of x in R    such that h > e > v on U , U = U C) R has smooth dll, and

supa£UfuGu(a, y)p(y)dy <ao. Take n so large that supael//(JGt/(a, y)p(y) ay < n.

For any  d) £ C(U), the space of bounded continuous functions on  U,

define an integral operator  T by

(T<p)(z) =-- f    G.Az, y)p(y)<p(y)dy.
n J U     u

It is well known (cf. e.g. Miranda [3, p. 25]) that  T is a linear operator in

C(U)  and its operator norm satisfiesr

\\T\\<1 sup   J    Gu(a,y)p(y)dy<  1.
a e U

Thus the Fredholm integral equation (/ — T)a = k has a unique solution  a,

where  / is the identity operator in  C(U)  and  k £ B0(U)  such that k\dU =0,

0 < k < h  on   (J, and k(x) = h(x).  Clearly  a £ B^. \AU), a = k on (dU) U

(U* n A), and 0 < a < k on  U.  Extend a  to   R  by setting  a|R - U = 0  and

then construct  un £ B   _i.(R)  such that a < aA < nu on   R.  Here 27a is the
0 n     L p —     0  —

harmonic projection of  a on  R.  Note that  aQ(x) = //(x), aQ = 0  on  A - V  ,

and  aQ < h on  R.
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Let ÍR.|~ be a regular exhaustion of  R and take  w. £ B (R .)  such that

wi = aQ   on  R - R ..  In view of  AaQ = n~  puQ < pu.   on  R, it is not difficult

to see that 0 < w. < w.   t < uQ  on  R  and   ||a2.|| = ||«0||.  By Harnack's princi-

ple for Aa = pu, the sequence  \w .} converges, uniformly on a compact sub-

set of  R, to a function  w £ BAR), such that 0 < w < uQ  on   R  and   ||u2|| =

||a„||. Since  w = 0  on  A — U  , we conclude that

max w = \\w\\ = || u  || = max  a. > a (x) = h(x) > e.

U*nA t/*nA

In view of w £ F. , max,,„.f > max,,,., w > e.   But this contradicts our
h U  OA    — u *n A

choice of  U  : v < e on   U .

This completes the proof of our theorem.

3. As an application of our theorem we would like to mention its contri-

bution to the comparison problem of the spaces   BAR) for various densities

p(x).  In this vein an elegant result of Royden [7] states: if  p(x) and  q(x)

ate two densities such that for some constant  a > 1, a-  p(x) < a(x) < ap(x)

off some compact subset of  R, then  BAR) and BAR)  ate isometric.  Later

Nakai [4] found another important criterion: the same conclusion holds if

fR\p(x) - a(x)| dx < oo.

The following result considerably sharpens their conclusions in view of

the fact that  A is topologically "small" in  R   — R.

Corollary.  Banach spaces BAR) and B (R) are isometrically isomorphic

in each of the following cases:

(i)  there exists a constant a > 1   such that  a-   p(x) < q(x) < ctp(x)  in

some open neighborhood U    of A  in R  ;

(ii)  there exists an open neighborhood V     of A  in R     such that

Iut)r\P(x) - ?(*)| dx < oo.

Proof.  In case (i), it is easy to see that ß(p) = /3(a).  Now assume that

condition (ii) holds.  Contrary to our conclusion, suppose that there exists a

point a  e ß(p) - /3(a). In this case there exists a a £ BAR) such that 0 <

u < 1 on R and a(a) = 1. Since a ft /3(a), v(a) = 0 for v £ B (R). Choose an

open neighborhood  V    of a  in   R     such that

sup    J    Gy(x, y)p(y)dy <ao    and      J    | p(x) - q(x) \ dx < oo,

where  V = V   H R.  It can be shown from the second inequality that

J,Gv(x, y)\p(y) - a(y)| dy < co
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for each  x £ V.  For a "regular" exhaustion   {iî   If  of  V construct  v    on
° ni 77

!  (iî )  and  v   = a on   V - Í2  .  Then w
q        72 77 77

a(x) = h(x) -   Ç     Gix, y)p(y)u(y) dy,
n Jsi„    "

V such that  v    £ B  (iî )  and  v    = a on   V - iî  .  Then we can write
72 q        72 77 77

vn^ = Vx) ~ f    GJX- yh(y)v„(y)dy
j \t„

on 0  , where  h    £ B„(Í2 ) with h   |r?0    = a  and  G (x, y) is the Green's func-
72' 77 0 77 77 ' 72 n       *   j

tion on Q . Since 0 < h   < 1  and 0 < v   < 1, we may assume that b   —* b £
77 —       77  — —       72   —       ' ' n

BAV) and  v   —>  v £ B (V), uniformly on compact subsets of  V.  In view of

|a(x) - vn(x)\ <   f      Gnix, y)\qiy) - p(y)\vriy) dy

+  f      G„(x. y)piy)\viy) - u(y)\ dy
Jan

<   f     Gv(x, y)[\q(y) - p(y)\ + p(y)]dy
Jan

we conclude that

|a(x) - i2(x)| <   f    Gv(x, y)[\q(y) - piy)\ + piy)] dy

on   V and therefore on   V U ja!.  Note that all three functions in the above

inequality have continuous extensions to   V . Since the Green's potential

vanishes on   V  O A, we deduce that  v(a) = a(a) = 1, a contradiction to the

fact that a /. /3(a).
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