PROXIMITY SPACES AND TOPOLOGICAL FUNCTORS

W. N. HUNSAKER AND P. L. SHARMA

ABSTRACT. The purpose of this paper is to determine what natural functors $T: A \to X$ are $(\mathcal{E}, \mathbb{X})$ -topological, where A is a subcategory of the category of proximity or uniform spaces and X is an $(\mathcal{E}, \mathbb{X})$ -category. We give necessary and sufficient conditions under which a point separating family of continuous functions can be nicely lifted to a proximally continuous family. Proximities having a finest compatible uniform structure are characterized.

Introduction. A problem which frequently arises in analysis is to determine whether or not a given continuous function is proximally (uniformly) continuous. More generally, let X be a topological space and let F be a family of continuous functions, each member f of F being from X into a proximity space Y_f . Does there exist a "compatible" proximity structure δ on X satisfying:

- (i) each $f \in F$ is p-continuous on (X, δ) , and
- (ii) for any proximity space Z and any continuous function g from Z to X, g is p-continuous iff fg is p-continuous for each $f \in F$.

Problems similar to this are solved in standard textbooks on topology with X a set, F a family of functions and Y_f either a uniform space or a topological space; however, more general problems of this type have not yet been discussed in the literature.

In order to study these questions it is convenient to make use of the notions of $(\mathfrak{S}, \mathbb{M})$ -categories and topological functors as introduced by Herrlich [2].

1. Preliminaries. Let X be a category. A source in X is a pair $(X, f_i)_I$, where X is an object in X and $f_i \colon X \to X_i$ is a family of X-morphisms indexed by a class I. $(X, f_i)_I$ is a monosource if it is a source, and r = s whenever $f_i r = f_i s$ for every $i \in I$. A morphism e in a category X is a regular epimor-

Received by the editors June 1, 1973 and, in revised form, October 12, 1973. AMS (MOS) subject classifications (1970). Primary 54A10, 54E05, 54E15, 18B99; Secondary 18A40, 54C99.

Key words and phrases. Source, absolutely topological functor, LO-proximity, EF-proximity, uniformity, proximity class, weak proximity.

phism if and only if it is the coequalizer of some pair of morphisms in X. A category X is an $(\mathcal{E}, \mathcal{M})$ -category provided that \mathcal{E} is a class of epimorphisms in X, closed under composition with isomorphisms, \mathcal{M} is a class of sources in X, closed under composition with isomorphisms, and the following conditions hold:

- (a) For every source $(X, f_i)_I$ in X there exists e in \mathcal{E} and $(Y, m_i)_I$ in \mathbb{M} such that $f_i = m_i e$ for each $i \in I$, and
- (b) whenever f and e are morphisms and $(Y, m_i)_I$ and $(Z, f_i)_I$ are sources in X such that $e \in \mathcal{E}$, $(Y, m_i) \in \mathbb{M}$ and $f_i e = m_i f$ for each $i \in I$, then there exists a (unique) morphism g in X such that f = ge and $f_i = m_i g$ for each $i \in I$.
- (1.1) Definition. Let X be an $(\mathfrak{S}, \mathfrak{M})$ -category and let $T: A \to X$ be a functor.
- (i) A source $(A, f_i)_I$ in A is called T-initial provided for any source $(B, g_i)_I$ in A and any X-morphism $f: TB \to TA$ with $Tf_i \cdot f = Tg_i$, for each $i \in I$, there exists a unique A-morphism $h: B \to A$ in A such that Th = f and $f_i h = g_i$ for each $i \in I$.
- (ii) A source $(A, f_i: A \to A_i)_I$ T-lifts a source $(X, g_i: X \to TA_i)_I$ in X if and only if there exists an isomorphism $k: X \to TA$ in X with $Tf_i k = g_i$ for each $i \in I$.
- (iii) A source $(A, f_i)_I$ in A is *initial* to a source $(X, Tf_i)_I$ in X if and only if $(A, f_i)_I$ is T-initial and T-lifts $(X, Tf_i)_I$. When the meaning is clear from the context, we say that A is initial to the source $(X, Tf_i)_I$.
- (iv) T is $(\mathfrak{S}, \mathbb{M})$ -topological if and only if for each family $(A_i)_I$ of A-objects and each source $(X, m_i: X \to TA_i)_I$ in \mathbb{M} there exists a T-initial source $(A, f_i: A \to A_i)_I$ in A which T-lifts $(X, m_i)_I$.
- (v) T is called absolutely topological if and only if it is $(\mathfrak{S}, \mathbb{M})$ -topological for any $(\mathfrak{S}, \mathbb{M})$ -structure on X.

For the definitions of LO- and EF-proximities, the reader is referred to [1]. The definition of a LO-base is analogous to that of an EF-base given in [5].

If δ is a LO-proximity on X then (X, δ) is called a LO-space (respectively an EF-space). For two LO-spaces (X, θ) and (Y, δ) , a function f on X to Y is said to be p-continuous provided $(A, B) \in \theta$ implies $(fA, fB) \in \delta$.

For two binary relations θ_1 and θ_2 on $\mathcal{P}(X)$, we say that θ_1 is finer than θ_2 (θ_2 is coarser than θ_1) if and only if $\theta_1 \subset \theta_2$. For a given LO-space (X, δ) and a subset $A \subset X$, defining $\overline{A} = \{x \in X : (\{x\}, A) \in \delta\}$ we get a Kuratowski closure operator on X. The induced topology is always R_0 . For a

 R_0 -space (X, \mathcal{T}) there are two distinguished LO-proximities. The finest LO-proximity which induces \mathcal{T} is denoted by δ_0 and is given by $(A, B) \in \delta_0$ if and only if $\overline{A} \cap \overline{B} \neq \emptyset$. A subset of the form $\overline{\{x\}}$ is called a point closure. The coarsest LO-proximity inducing \mathcal{T} is denoted by δ_c and is given by: $(A, B) \in \delta_c$ if and only if $\overline{A} \cap \overline{B} \neq \emptyset$ or each of the sets \overline{A} and \overline{B} is a union of infinitely many distinct point-closures [4].

Suppose β is a LO-base on a set X. Define $\delta(\beta)$ as follows: $(A, B) \notin \delta(\beta)$ if and only if there are finite covers $\{A_i : 1 \le i \le n\}$ and $\{B_j : 1 \le j \le m\}$ of A and B respectively such that $(A_i, B_j) \notin \beta$ for any i, j. Then $\delta(\beta)$ is the coarsest LO-proximity finer than the base β . The LO-proximity (respectively EF-proximity) $\delta(\beta)$ is said to be generated by the base β . Note that if β is an EF-base then $\delta(\beta)$ is an EF-proximity.

(1.3) Lemma. Let β_1 , β_2 be LO-bases on sets X and Y respectively, and let f be a function on X to Y such that $(A, B) \in \beta_1$ implies $(fA, fB) \in \beta_2$. Then $f: (X, \delta(\beta_1)) \to (Y, \delta(\beta_2))$ is p-continuous.

For any collection $S = \{\delta_i : i \in I\}$ of LO-proximities on a set X, $\bigvee S$ denotes the join of the collection S. If each δ_i is EF then so is $\bigvee \delta_i$. The following result is true for LO as well as EF-proximities.

- (1.4) Lemma. Let $f:(X, \delta_{\lambda}) \to (Y, \delta'_{\lambda})$ be p-continuous for each member λ of some indexing set I. Then $f:(X, \bigvee \delta_{\lambda}) \to (Y, \bigvee \delta'_{\lambda})$ is p-continuous.
- **Proof.** Let $\beta_1 = \bigcap \{\delta_{\lambda} : \lambda \in I\}$ and $\beta_2 = \bigcap \{\delta'_{\lambda} : \lambda \in I\}$. Then for each $(A, B) \in \beta_1$, $(f(A), f(B)) \in \beta_2$ and the conclusion follows from Lemma 1.3.
- (1.5) Lemma. Let F be a family of functions, each member f of F being on a set X into a LO-space (Y_f, δ_f) . Then there exists a coarsest LO-proximity δ_F on X making each member of F p-continuous. Moreover δ_F is compatible with the weak topology on X determined by the family F; and if each δ_f is EF then so is δ_F .

Proof. Define a binary relation β_F on the power-set of X as follows: $(A, B) \in \beta_F$ if and only if $(fA, fB) \in \delta_f$ for each f in F. β_F is a LO-base on X and the LO-proximity $\delta_F = \delta(\beta_F)$ fulfills all the requirements.

The relation δ_F is called the weak-LO (respectively weak-EF) proximity on X determined by the family F. By LO (respectively EF) we denote the category of LO-spaces (respectively EF-spaces) and p-continuous maps. S is the category of sets.

- 2. Topological functors.
- (2.1) **Theorem.** The functors (L0-S) and (EF-S) are absolutely topological.

Proof. Let $(Y_i, \delta_i)_I$ be a family of LO-spaces and $(X, f_i: X \to Y_i)_I$ be any source in S. Denote by δ_F the weak LO-proximity on X determined by the family $F = (f_i)_I$. Let (Z, δ) be a LO-space and suppose $g: (Z, \delta) \to (X, \delta_F)$ is not p-continuous. Take $(A, B) \in \delta$ such that $(gA, gB) \notin \delta_F$. Since $\delta_F = \delta(\beta_F)$ there exist finite covers $\{H_i: 1 \le i \le m\}$ and $\{K_j: 1 \le j \le n\}$ of g(A) and g(B) respectively such that $(H_i, K_j) \notin \beta_F$ for any i, j. Also there exist i, j such that $(g^{-1}H_i, g^{-1}K_j) \in \delta$; and as $(H_i, K_j) \notin \beta_F$ there is $f_k \in F$ such that $(f_k H_i, f_k K_j) \notin \delta_k$. This shows that $f_k g$ is not p-continuous. The proof is now complete.

(2.2) **Theorem.** For any full epireflective subcategory C of L0 the functor (C-S) is (epi, mono-source) topological.

Proof. Let $(Y_i)_I$ be a family of objects in C and let $(X, m_i: X \to Y_i)_I$ be a mono-source in S. Denote by δ_I the weak LO-proximity on X induced by the family $\{m_i: i \in I\}$. The evaluation map on (X, δ_I) is a proximal isomorphism into the product of $(Y_i)_I$. Thus, (X, δ_I) belongs to C. Obviously, the source $((X, \delta_I), m_i)$ is initial to (X, m_i) in S and the proof is complete.

By $L0^*$ (respectively EF^*) we denote the full subcategory of L0 consisting of all separated L0 (respectively separated EF) spaces. Since $L0^*$, EF, and EF^* are full epireflective subcategories of L0, we have the following:

- (2.3) Corollary. Each of the functors $(L0^* S)$, (EF S) and $(EF^* S)$ is (epi, mono-source) topological.
 - (2.4) Example. The functor $L0^*-S$ is not absolutely topological.

Proof. Let X be an infinite set. Take $X \times X = Z$ with the LO-proximity δ_1 defined by $(P,Q) \in \delta_1$ if and only if $P \cap Q \neq \emptyset$ or each of the sets P and Q is infinite. Consider the function $\pi\colon Z \to X$ defined by $\pi(x_1,x_2) = x_1$ for all $(x_1,x_2) \in Z$. Then for any two disjoint infinite subsets A and B of X we have $(b \times A, a \times B) \in \delta_1$, for $b \in B$ and $a \in A$; but $(b,a) \notin \delta$ for any separated LO-proximity δ on X. Thus no object in LO^* can be initial to $(X,f_0\colon X\to X)$ where f_0 is a constant function on X to X.

We remark that none of the functors $(LO-R_0)$, (LO^*-T_1) , (EF-CR) $(EF^*-T_3\frac{1}{2})$ is absolutely topological. This can be easily seen by considering such examples as the following.

(2.5) Example. For any nonindiscrete R_0 -space X there exists a LO-space Z and a continuous function f on Z to X such that for no compatible LO-proximity on X is f p-continuous.

Proof. Let Y be an infinite discrete topological space and set $Z=X\times Y$. The projection p_x of Z into X is continuous. Let δ_c be the coarsest compatible LO-proximity on Z. Since X is nonindiscrete R_0 , there exist two points x_1 , x_2 of X such that $\operatorname{cl}(\{x_1\}) \cap \operatorname{cl}(\{x_2\}) = \emptyset$, and therefore for any compatible LO-proximity δ on X, $(\{x_1\}, \{x_2\}) \notin \delta$. Also $p_x^{-1}\operatorname{cl}(\{x_1\}) = \{(a, y): a \in \operatorname{cl}(\{x_1\}), y \in Y\}$ and thus each of the sets $p_x^{-1}\operatorname{cl}(\{x_1\}), p_x^{-1}\operatorname{cl}(\{x_2\})$ is the union of infinitely many pairwise disjoint point-closures, thereby showing that $(p_x^{-1}\operatorname{cl}(\{x_1\}), p_x^{-1}\operatorname{cl}(\{x_2\})) \in \delta_c$. Thus the function p_x cannot be p-continuous.

Let X be a topological space. A determinator on X is a source (X, f_i) in TOP such that for each closed set A in X and each point x in the complement of A we can find a finite subfamily $\{f_i: 1 \le i \le n\}$ of F and a finite cover $\{A_i: 1 \le i \le n\}$ of A such that $f_i(x) \notin \operatorname{cl}(f_i(A_i))$ for any i. Observe that any family of continuous functions which distinguishes points and closed sets is a determinator on X.

- (2.6) Theorem. The weak topology determined on a topological space X by a source of continuous functions on X coincides with the given topology of X if and only if the source is a determinator on X.
- (2.7) Theorem. Let (Y_i, δ_i) be a collection of separated LO-spaces and $(X, f_i: X \to Y_i)$ a mono-source in T_1 . A source initial to $(X, f_i)_I$ via the functor $(\mathbf{LO^*} T_1)$ exists in $\mathbf{LO^*}$ if and only if $F = (X, f_i)_I$ is a determinator on X.
- **Proof.** If F is a determinator on X then by Lemma 1.5 and Theorem 2.6, the weak LO-proximity δ_F on X is compatible (and separated), and thus the LO-space (X, δ_F) is initial to $(X, f_i)_I$.

To prove the converse, suppose F is not a determinator on X. Since each member of F is continuous, δ_F must be coarser than the finest compatible LO-proximity on X. In fact the topology $\tau(\delta_F)$ induced by δ_F must be strictly coarser than the given topology, say τ , on X. So there is a subset A_0 of X such that A_0 is closed in (X, τ) but not closed in $(X, \tau(\delta_F))$. Let δ_C be the coarsest LO-proximity on X compatible with τ and set $\delta^* = \delta_C \vee \delta_F$. It is clear that no object except perhaps (X, δ^*) could be initial to (X, f_i, Y_i) . But (X, δ^*) also fails to be initial to (X, f_i, Y_i) for the

following reason: We can find a separated LO-space (Z, δ) and a continuous function $g: (Z, \tau(\delta)) \to (X, \tau)$ such that $g: (Z, \delta) \to (X, \delta_F)$ is p-continuous but $g: (Z, \delta) \to (X, \delta_C)$ is not p-continuous and hence $g: (Z, \delta) \to (X, \delta^*)$ is not p-continuous. The space (Z, δ) is constructed as follows:

Let A_0 be given the subspace topology inherited from the topology τ on X, and let Z be the disjoint topological union of A_0 and N where N is the discrete space of natural numbers. Since A_0 is not closed in the topology $\tau(\delta_F)$ on X there is a point $x_0 \notin A_0$ such that x_0 is in the closure of A_0 with regard to the topology $\tau(\delta_F)$ on X.

Define $g\colon Z\to X$ by g(z)=z if $z\in A_0$ and $g(z)=x_0$ otherwise. Then $g\colon Z\to (X,\tau)$ is continuous. Let δ_g be the LO-proximity on Z defined by $(A,B)\in \delta_g$ if and only if $(gA,gB)\in \delta_F$ and let δ_1 be the coarsest compatible LO-proximity on Z. Set $\beta=\delta_g\cap \delta_1$, β is a LO-base on Z and $g\colon (Z,\delta(\beta))\to (X,\delta_F)$ is p-continuous. Also if τ_0 is the topology on Z induced by $\delta(\beta)$ then $g\colon (Z,\tau_0)\to (X,\tau)$ is continuous. Now we complete the proof by showing that $g\colon (Z,\delta(\beta))\to (X,\delta_C)$ is not p-continuous. Since each of the sets A_0 and N are infinite, it is clear that $(A_0,N)\in \beta$. Let $\{P_i\colon 1\le i\le m\}$ and $\{N_i\colon 1\le j\le n\}$ be any finite covers of A_0 and N respectively. Then there exists i_0 , such that P_{i_0} is infinite and x_0 is in the $\tau(\delta_F)$ -closure of $g(P_{i_0})=P_{i_0}$. Also there is a j_0 such that N_j is infinite. Therefore $(P_{i_0},N_j)\in \beta$ and hence $(A_0,N)\in \delta(\beta)$. This shows that $g\colon (Z,\delta(\beta))\to (X,\delta_C)$ is not p-continuous and completes the proof.

An EF-space (X, δ) is called p-stable if and only if the p-class $\Pi(\delta)$ of uniformities on X compatible with δ has a finest member. In what follows, U denotes the category of uniform spaces and uniformly continuous maps.

(2.8) **Theorem.** An EF-space (X, δ) is p-stable if and only if for each source $((X, \delta), f_i)_I$ in EF, there exists a source initial to it in U.

Proof. Suppose that δ is p-stable and let \mathcal{U}_1 and \mathcal{U}_0 be respectively the finest and the coarsest member of the p-class $\Pi(\delta)$ of uniformities compatible with δ . Let \mathcal{U}_F be the weak uniformity determined on X by $F=(f_i)_I$. Since each $f \in F$ is p-continuous, each member of F is uniformly continuous if the uniformity \mathcal{U}_1 is taken on X. Therefore $\mathcal{U}_F \subseteq \mathcal{U}_1$. Let $\mathcal{U}^* = \mathcal{U}_F \vee \mathcal{U}_0$. Then \mathcal{U}^* is compatible with δ and each member of F is uniformly continuous if we take the uniformity \mathcal{U}^* on X. In fact \mathcal{U}^* is the coarsest uniformity on X compatible with δ such that each function in F becomes uniformly continuous. Now we claim that (X, \mathcal{U}^*) is initial to the given source. Suppose (Z, \mathcal{U}) is a uniform space such that (i) $g: (Z, \mathcal{U}) \to (X, \delta)$

is p-continuous, and (ii) $f \cdot g$ is uniformly continuous for each f in F. The proximal continuity of g implies that $g: (Z, \mathcal{U}) \to (X, \mathcal{U}_{\overline{Q}})$ is uniformly continuous, and the fact that $f \cdot g$ is uniformly continuous for each f in F implies that $g: (Z, \mathcal{U}) \to (X, \mathcal{U}_F)$ is uniformly continuous. From these we conclude that $g: (Z, \mathcal{U}) \to (X, \mathcal{U}^*)$ is uniformly continuous.

Now to prove the converse, we suppose that (X, δ) is not p-stable. Let $\{\mathcal{U}_{\lambda} \colon \lambda \in \Lambda\}$ be the p-class of uniformities of δ . For each $\lambda \in \Lambda$ take $I_{\lambda} \colon X \to (X, \mathcal{U}_{\lambda})$ defined by $I_{\lambda}(x) = x$ for all $x \in X$ and set $F = \{I_{\lambda} \colon \lambda \in \Lambda\}$. Since there is no finest member in the collection $\{\mathcal{U}_{\lambda} \colon \lambda \in \Lambda\}$ it follows that (X, δ) cannot be lifted to an initial source.

It would be interesting to have a characterization of those sources which the functor $(U-T_{3\,1/3})$ lifts to initial sources.

BIBLIOGRAPHY

- 1. M. S. Gagrat and S. A. Naimpally, Proximity approach to extension problems, Fund. Math. 71 (1971), 63-76. MR 45 #2653.
 - 2. H. Herrlich, Topological functors, General Topology and Appl. (to appear).
- 3. H. Herrlich and G. Strecker, Category theory, Allyn and Bacon, Boston, Mass., 1973.
- 4. P. L. Sharma and S. A. Naimpally, Construction of Lodato proximities, Math. Japon. 15 (1970), 101-103. MR 44 #4709.
- 5. P. L. Sharma, Proximity bases and subbases, Pacific J. Math. 37 (1971), 515-526. MR 46 #4488.

DEPARTMENT OF MATHEMATICS, SOUTHERN ILLINOIS UNIVERSITY, CARBON-DALE, ILLINOIS 62901