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PROXIMITY SPACES AND TOPOLOGICAL FUNCTORS

W. N. HUNSAKER AND P. L. SHARMA

ABSTRACT.   The purpose of this paper is to determine what natural

functors   T: A —► X are  (é, )ü)-topological,   where A is a subcategory of

the category of proximity or uniform spaces and X is an (e,)S)-category. We

give necessary and sufficient conditions under which a point separating

family of continuous functions can be nicely lifted to a proximally con-

tinuous family.   Proximities having a finest compatible uniform structure

are characterized.

Introduction.  A problem which frequently arises in analysis is to deter-

mine whether or not a given continuous function is proximally (uniformly)

continuous.   More generally, let X be a topological space and let F be a

family of continuous functions, each member f of F being from X into a proxim-

ity   space   Y,.   Does there exist a "compatible" proximity structure S on X

satisfying:

(i) each / £ F is ¿/-continuous on (X, 8), and

(ii) for any proximity space Z and any continuous function g from Z to

X, g is //-continuous iff fg is p-continuous for each / £ F.

Problems similar to this are solved in standard textbooks on topology

with X a set, F a family of functions and   Y, either a uniform space or a

topological space; however, more general problems of this type have not yet

been discussed in the literature.

In order to study these questions it is convenient to make use of the

notions of (fe, JII)-categories and topological functors as introduced by Herr-

lich [2].

1. Preliminaries.   Let X be a category.   A source in X is a pair (X, /.).,

where X is an object in X and f.: X —> X .  is a family of X-morphisms indexed

by a class 7.   (X, /.L is a monosource it it is a source, and  r = s whenever

f.r = f.S for every i £ I.   A morphism e in a category X is a regular epimor-
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phism if and only if it is the coequalizer of some pair of morphisms in X.

A category   X  is an (to, JII)-category provided that G is a class of epimor-

phisms in X, closed under composition with isomorphisms, Jîl is a class of

sources in X, closed under composition with isomorphisms, and the following

conditions hold:

(a) For every source   (X, /.). in X there exists e in to and (Y, 222.). in JÍÍ

such that f. = m.e tot each /' £ I, and

(b) whenever / and e ate morphisms and  (Y, m .). and (Z, /.), are sources

in X such that e £ to, (Y, m .) £%. and f -e = m.f tot each i £ I, then there

exists a (unique) morphism g in X such that / = ge and /. = m .g tot each

i£ I.

(1.1) Definition.   Let X be an (ë, 3ïï)-category and let Tl A —» X be a

functor.

(i) A source  (A, /.)  in A is called T-initial provided for any source

(B, g .), in A and any X-morphism /: TB —* TA with Tf. • f = Tg ., tot each

i £ I, there exists a unique A-morphism h: B —» A in A such that Th = / and

f .h = e . tot each i £ I.' i °i

(ii) A source  (A} f.: A —> A .L T-lifts a source (X, g.: X —> TA.)} in X

if and only if there exists an isomorphism k: X —> TA in X with Tf .k = g.

tot each i £ I.

(ni) A source   (A, f.). in A is initial to a source   (X, Tf.). in X if and

only if  (A, f .)j is T-initial and T-lifts (X, Tf.)..   When the meaning is clear

from the context, we say that A is initial to the source (X, Tf.),.

(iv) T is (to, Wy-topológica I if and only if for each family  (A .)j of A-

objects and each source   (X, m .: X —> TA .)   in IK there exists a T-initial

source  (A, f.: A —► A .), in A which T-lifts (X, 222.),.
'   ' 2 2   / 7   /

(v) T is called absolutely topological it and only if it is (to, 3H)-topo-

logical for any (to, !JR)-structure on X.

For the definitions of LO- and EF-proximities, the reader is referred to

[l].   The definition of a LO-base is analogous to that of an EF-base given

in [5].

If 5 is a LO-proximity on X then (X, 8) is called a LO-space (respec-

tively an EF-space).   For two LO-spaces (X, 8) and (Y, 8), a function / on X

to Y is said to be ¿/-continuous provided  (A, B) £ 8 implies (/A, fB) £ 8.

For two binary relations  8. and 6   on J (X), we say that  8.   is finer

than 82 (Ö    is coarser than 8.) if and only if 8. C (L.   For a given LO-space

(X, §)and a subset A C X, defining A = [x e X: ({*}, A) e r3! we get a Kura-

towski closure operator on X.   The induced topology is always R Q.   For a
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Rg-space (X, J ) there are two distinguished LO-proximities.   The finest

LO-proximity which induces J  is denoted by f5Q and is given by (A, B) £ SQ

if and only if A n B 4 0.   A subset of the form ix|  is called a point clo-

sure.   The coarsest LO-proximity inducing S is denoted by <S    and is given

by: (A, B) £ 8    if and only if A n B 4 0   or each of the sets A and B is a

union of infinitely many distinct point-closures [Ai.

Suppose ß is a LO-base on a set X.   Define  8(ß) as follows:  (A, B) i

8(ß) if and only if there are finite covers  [A,: 1 < i < n\ and ÍB . : 1 < / < m]

of A and B respectively such that  (A¿) B ) / ß tot any /', ;'.   Then 8(ß) is

the coarsest LO-proximity finer than the base ß.   The LO-proximity (respec-

tively EF-proximity) 8(ß) is said to be generated by the base ß.   Note that

if ß is an EF-base then 8(ß) is an EF-proximity.

(1.3) Lemma. Let ß^, ß2 be LO-bases on sets X and Y respectively,

and let f be a function on X to Y such that (A, B) £ ß implies (fA, fB) £

ß2.   Then f: (X, S(ß^) -^ (Y, 8(ß2)) is p-continuous.

For any collection S = \8 .: i £ 1} of LO-proximities  on a set X,  VS

denotes the join of the collection S.   If each 8 . is EF then so is   VS..   The
' 2 2

following result is true for LO as well as EF-proximities.

(1.4) Lemma.   Let f: (X, 8^) —► (Y, 8 x) be p-continuous for each member

X of some indexing set I.   Then f: (X,   v&\) —* (Y, VS\) is p-continuous.

Proof.  Let ßl =D\8X: A e /} and ß2 =f|15A: A £ I\.   Then for each

(A, B) £ jSj, (f(A), f(B)) £ ß2  and the conclusion follows from Lemma 1.3.

(1.5) Lemma.   Let F be a family of functions, each member f of F being

on a set X into a LO-space (Y,, 8 A.   Then there exists a coarsest LO-

proximity 8p on X making each member of F p-continuous.   Moreover 8p  is

compatible with the weak topology on X determined by the family F; and if

each 8, is EF then so is 8p.

Proof.  Define a binary relation ßp  on the power-set of X as follows:

(A, B)£ ßp if and only if (fA, fB) £ 8f for each / in E.   ßp is a LO-

base on X and the LO-proximity 8p = 8(ßp) fulfills all the requirements.

The relation 8p  is called the weak-LO (respectively weak-EF) proxim-

ity  on X   determined by the family E.   By LO (respectively EF) we denote

the category of LO-spaces (respectively EF-spaces) and p-continuous maps.

S is the category of sets.
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2. Topological functors.

(2.1) Theorem.   The functors  (LO - S) and (EF - S) are absolutely

topological.

Proof.   Let (Y.,8^ be a family of LO-spaces and (X, /.: X —> Y.)¡ be

any source in S.   Denote by Sp the weak LO-proximity on X determined by

the family F = (/),-   Let  (Z, 8) be a LO-space and suppose g: (Z, 5) —»

(X, 8p) is not p-continuous.   Take  (A, B) £ 8 such that (gA, gB) 48   .

Since 8p = 8(ßp) there exist finite covers  \H.: 1 < i < m\ and [K.i 1 </'< n]

oí g(A) and g(B) respectively such that  (H., K.) 4 ßp fot any /', ;'.   Also

there exist /', /' such that (g~   H., g~   K.) £ 8; and as   (H., K.) 4 ßp there is

/,  £ F such that (/,H., f,K.) 4 8  .   This shows that f,g is not p-continuous.

The proof is now complete.

(2.2) Theorem.  For any full epireflective subcategory C of LO the

functor (C — S) is (epi, mono-source) topological.

Proof.  Let (Y.). be a family of objects in C and let (X, m.: X —> Y.).

be a mono-source in S.   Denote by 8. the weak LO-proximity on X induced

by the family \m .: i £ l\.   The evaluation map on  (X, 8.) is a proximal iso-

morphism into the product of (Y.)f.   Thus, (X, 8 ) belongs to C.   Obviously,

the source  ((X, 8j), m.) is initial to (X, m.) in S and the proof is complete.

By LO   (respectively EF   ) we denote the full subcategory of LO con-

sisting of all separated LO (respectively separated EE) spaces.   Since LO  ,

EF, and EF    are full epireflective subcategories of LO, we have the

following:

(2.3) Corollary.  Each of the functors  (LO*- S), (EF - S) and (EF*- S)

is (epi, mono-source) topological.

(2.4) Example.   The functor  LO   - S is not absolutely topological.

Proof.  Let X be an infinite set.   Take X x X = Z with the LO-proximity

8. defined by (P, Q) £ 8     if and only if  P n Q 4 0   or each of the sets P

and Q is infinite.   Consider the function n: Z —> X defined by rt(x   , x  ) = x

for all (x., x   ) £ Z.   Then for any two disjoint infinite subsets A and B of

X we have (b x A, a x B)£ <5j, for  b £ B and a £ A; but  (b, a) 4 8 for any

separated LO-proximity 8 on X.   Thus no object in LO   can be initial to

(X, /„: X —> X) where /Q  is a constant function on X to X.

We remark that none of the functors  (LO - RQ), (LO*- Tj), (EF - CR)

(EF   - T.,, ) is absolutely topological.   This can be easily seen by con-

sidering such examples as the following.
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(2.5) Example. For any nonindiscrete R n-space X there exists a LO-

space Z and a continuous function / on Z to X such that for no compatible

LO-proximity on X is / p-continuous.

Proof. Let y be an infinite discrete topological space and set Z =

X x y.   The projection  px of Z into X is continuous.   Let 8    be the

coarsest compatible LO-proximity on Z.   Since X is nonindiscrete R n, there

exist two points xx, x2 of X such that cKjXjl) n cl(j*2}) = 0, and therefore

for any compatible LO-proximity 8 on X, (jxj \, \x2\) 4 8.   Also p    cl(!x,}) =

\(a, y): a £ cl({xA), y £ Y\ and thus each of the sets  p~ cKjXji),

p~ cKjx-i) is the union of infinitely many pairwise disjoint point-closures,

thereby showing that   (p~ cl(\x A), p~ cl(\xA)) £ 8       Thus the function  p
X 1 X ¿. C X

cannot be p-continuous.

Let X be a topological space.   A determinator on X is a source (X, /.)

in TOP such   that for each closed set A in X and each point x in the com-

plement   of A we can find a finite subfamily !/.: 1 < i < n\ of E and a finite

cover \A .: 1 < i < 22S of A such that f .(x) 4 cl(/.(A .)) for any 2.   Observe that

any family of continuous functions which distinguishes points and closed

sets is a determinator on X.

(2.6) Theorem.   The weak topology determined on a topological space X

by a source of continuous functions on X coincides with the given topology

of X if and only if the source is a determinator on X.

(2.7) Theorem.   Let  (Y., 8.) be a collection of separated LO-spaces

and (X, /.: X —» y.) a mono-source in T..   A source initial to  (X, /.). via

the functor (LO   — T1 ) exists in LO    if and only if F = (X, /.).  is a deter-

minator on X.

Proof.   If E is a determinator on X then by Lemma 1.5 and Theorem 2.6,

the weak LO-proximity 8p on X is compatible (and separated), and thus the

LO-space (X, 8p) is initial to (X, /.) .

To prove the converse, suppose E is not a determinator on X.   Since

each member of F is continuous, 8p must be coarser than the finest com-

patible LO-proximity on X.   In fact the topology r(8p) induced by 8p must

be strictly coarser than the given topology, say r, on X.   So there is a sub-

set AQ of X such that A Q is closed in (X, r) but not closed in (X, r(8p)).

Let 8    be the coarsest LO-proximity on X compatible with r and set 8   =

8c V 8p.   It is clear that no object except perhaps (X, 8  ) could be initial

to (X, /., y¿).   But (X, 8*) also fails to be initial to (X, /.,   Y¿) for the
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following reason: We can find a separated LO-space (Z, 8) and a continuous

function g: (Z, r(S)) —» (X, r) such that g: (Z, S) —» (X, 8p) is p-continuous

but g: (Z, <5) —» (X, 8  ) is not p-continuous and hence  g: (Z, 8) —> (X, 8  )

is not p-continuous.   The space  (Z, 8) is constructed as follows:

Let A .  be given the subspace topology inherited from the topology r

on X, and let Z be the disjoint topological union of A Q and /V where iV is the

discrete space of natural numbers.   Since  A .  is not closed in the topology

t(8p) on X there is a point xQ 4 AQ such that xQ  is in the closure of A Q

with regard to the topology r(8p) on X.

Define g: Z —> X by g(z) = z if z £ A Q and g(z) = xQ otherwise.   Then

g: Z —► (X, r) is continuous.   Let 8    be the LO-proximity on Z defined by

(A, B) £ 8    if and only if (gA, gB) £ Sp and let 8.   be the coarsest com-

patible LO-proximity on Z.   Set ß = 8    Ci 8., ß is a LO-base on Z and

g: (Z, S(/3)) —» (X, 8p) is p-continuous.   Also if rQ  is the topology on Z

induced by t3(/3) then g: (Z, rn) —» (X, r) is continuous.   Now we complete

the proof by showing that g: (Zt 8(ß)) —► (X, <5  ) is not p-continuous.   Since

each of the sets AQ and N ate infinite, it is clear that (A     N) £ ß.   Let

{P.: 1 < i < m\ and \N.: 1 < /' < n\ be any finite covers of A    and N respec-

tively.   Then there exists in, such that   P.    is infinite and x„  is in the
y o« 70 o

r(Sp)-closure of g(P.  )= P. .   Also there is a /. such that N.    is infinite.
r *o        lo u Jo

Therefore  (P.  , N.  ) £ ß and hence (A ., N) £ 8(ß).   This shows that
z0       J0       _ u

g: (Z, 8(ß)) —► (X, 8  ) is not p-continuous and completes the proof.

An EF-space (X, 8) is called p-stable if and only if the p-class II(§) of

uniformities on X compatible with <5 has a finest member.   In what follows,

U denotes the category of uniform spaces and uniformly continuous maps.

(2.8) Theorem.  An EF-space (X, 8) is p-stable if and only if for each

source ((X, 8), f.). in EF, there exists a source initial to it in U.

Proof. Suppose that 8 is p-stable and let 11    and Ug be respectively

the finest and the coarsest member of the p-class II(S) of uniformities com-

patible with t5.   Let   U„ be the weak uniformity determined on X by F =

(/.),.   Since each / £ F is p-continuous, each member of  E is uniformly con-

tinuous if the uniformity   II.  is taken on X.   Therefore   U    C U  .   Let   U   =

Up V  U¡g.   Then U   is compatible with 8 and each member of E is uniformly

continuous if we take the uniformity U   on X.   In fact U   is the coarsest

uniformity on X compatible with 8 such that each function in F becomes

uniformly continuous.   Now we claim that (X, Ll  ) is initial to the given

source.   Suppose  (Z, ll) is a uniform space such that (i) g: (Z, ll) —> (X, 8)
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is p-continuous, and (ii) / • g is uniformly continuous for each / in E.   The

proximal continuity of g implies that g: (Z, U) —» (X, Ujj) is uniformly con-

tinuous, and the fact that / • g is uniformly continuous for each f in F im-

plies that g: (Z, U) —>(X, Up) is uniformly continuous.   From these we

conclude that g: (Z, U) —> (X, U   ) is uniformly continuous.

Now to prove the converse, we suppose that (X, 8) is not p-stable. Let

J U^: À £ A\ be the p-class of uniformities of <5. For each À £ A take 1\: X—►

(X, u^) defined by ¡\(x) = x for all x £ X and set E = i/\: A e A\. Since there

is no finest member in the collection Í U^: A 6 A} it follows that (X, 8) can-

not be lifted to an initial source.

It would be interesting to have a characterization of those sources which

the functor  (U — T  x.) lifts to initial sources.
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