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REDUCING SUBSPACES OF CONTRACTIONS

WITH NO ISOMETRIC PART

JAMES GUYKER1

ABSTRACT.   Let  T  be a contraction on a Hubert space H   and sup-

pose that there is no nonzero vector f in H   such that   ||rn/|| = ||/||   for

every 72 = 1, 2, ••• .  In this paper, the reducing subspaces of  T  are char-

acterized in terms of the range of   1 — T   T. As a corollary, it is shown

that  T  is irreducible if   1 — T   T has 1-dimensional range.  In particular,

if U  is the simple unilateral shift, then the restriction of U     to any in-

variant subspace for U     is irreducible.

Let  T be a contraction on a Hilbert space H.  We recall that a (closed)

subspace M of H reduces T if M is invariant under both  T and T .  It the

only subspaces that reduce  T  are  iOi  and H itself, then  T  is said to be

irreducible.

The contraction  T has no isometric part if there is no nonzero vector

f in H  such that  ||T"/|| = ||/||   for every  n = 1, 2, ■ • • ..    The structure of the

reducing subspaces for the adjoint of a unilateral shift is well known [2, Lem-

ma 3-2, p. 724], [3, Theorem 1, p. 105].  In the present paper, the structure is

obtained for arbitrary contractions with no isometric part.

If E is a subset of H, then   VE  will denote the closed span of E.  For

subspaces M  and N of H  such that N C M, M Q N  will denote the orthogonal

complement of N  in  M.

Theorem.   Let T be a contraction on a Hilbert space H and suppose that

T has no isometric part.   Let  K  be the closure of the range of  1 — T T.  A

subspace M of H reduces  T if and only if M =   VÎT    /: f £ S, n > 0 î for
* *22

some unique subspace S of K  which is invariant under (I — T  T)TmT

every  m, n = 0, 1, 2, • • •.   In this caseft ...
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HQM =ViT*"/: f£ KOS,  n>0\.

Proof.  Suppose that M reduces T and let S be the closure of

(1 - T*T)M  in  H.  Clearly  \f\T*"f: f £ S, n > OS C M, and if g  is in M Q

V\T*"f: f £S, n > 01, then

(g, T*nil -T*T)Tng) = 0

tot every ?2 = 0, 1, 2, - • • .  Hence   ||T"+1g|| = \\Tng\\   tot every n =0, 1, 2,

• • • .  Since  T has no isometric part, g = 0.  Therefore

M=\J\T*"f: feS, n > 0\.

Since M  reduces  T, we have that  KQ S  is the closure in  H oí

(1 - T*T)(H 0 M)  and therefore H © M = VjT*"/: /eK0S,H>O|.

Conversely, suppose that M = ViT    /: / e S', n > 0l where S '  is a sub-

space of K  which is invariant under (I — T T)TmT      tot every  222, n = 0, 1,

2,.-..  Let

N = \g£ H: (1 - T*T)Tmg £ S', \/m = 0, 1, 2, • • •!.

Clearly  N D M. Let g   belong to   N.  Since (1 - T T)T"g is in  S ', we have

that  T   (I - TT)Tng is in  M for every n = 0, 1, 2, • • • .  It follows as above

that N = M  and hence that M reduces T.

Let S be the closure of (I — T  T)M  in  //.   Clearly  S C S     since

(1 - T T)T    f is in S    fot every f in S    and for every n = 0, 1, 2, • • • .

As above, H QM = ViT*"/: / e K 05, « > 0i. It follows that S'Q S is con-

tained in both  M  and HQM, and consequently  c   = S.

Corollary 1.  // T is a contraction with no isometric part and 1 - T T

has l-dimensional range, then  T  is irreducible.

Proof.  In the Theorem, let  K be l-dimensional.   Since the only subspaces

S of  K ate therefore  ¡0Î  and  K itself, it follows that the only subspaces  M

of H that reduce T are ¡Oí and H itself.

A basic result is that the restriction of the simple unilateral shift U to

any invariant subspace for U is irreducible [3]. Corollary 1 immediately im-

plies

Corollary 2. The restriction of U to any invariant subspace for U is

irreducible.

Remark. The above theorem was obtained by proving special cases with

the use of the canonical model of de Branges and Rovnyak [l].
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