EVERY DIRECTION A JULIA DIRECTION

BRYAN E. CAIN

Abstract

Let $f(z)=\exp (\cosh z)$. If N is any ϵ-neighborhood of any ray through the origin with slope $m \neq 0, \infty$ then $f^{-1}(w) \cap N$ is infinite if $w \neq 0$.

Let $J[f]$ denote the set of Julia directions of the entire function f. That is, $\theta \in J[f]$ if, in every sector $\alpha<\arg z<\beta$ such that $\alpha<\theta<\beta$, f assumes every complex value, with at most one exception, infinitely often. Using infinite products Julia [2] has constructed an entire function for which every direction is a Julia direction. The example which follows is more elementary.

The closed annulus $\{1 / n \leq|z| \leq n\}$ will be denoted A_{n} for $n=1,2$, \cdots.. If $a, b, \delta>0$ the closed rectangle $\{x+i y:-a \leq x \leq a: b-\delta \leq y \leq b$ $+\delta\}$ will be denoted by $R_{\delta}(a, b)$.

Theorem. If $f(z)=\exp (\cosh z)$ then $J[f]=\mathbf{R}$.
Proof. The relations $f(\bar{z})=(f(z))^{-}$and $f(z)=f(-z)$ imply that if $\theta \in J[f]$ then $-\theta, \theta \pm \pi \in J[f]$. Consequently we can finish the proof by showing that $(0, \pi / 2) \subset J[f]$ because the set of Julia directions is clearly al ways closed.

Now suppose that θ, α, β are given and that they satisfy $0<\theta<\pi / 2$ and $a<\theta<\beta$. They will be fixed for the rest of the proof.

Let $S=\{x+i y: m x-\epsilon<y<m x+\epsilon\}$ where $m=\tan \theta$ and $0<\epsilon<\pi$. The function $z \rightarrow 1 / 2 \exp (z)$ maps the strip S onto a ribbon which starts at the origin, wraps around it infinitely often, and spirals out to infinity. This ribbon has γ_{-}for its inside boundary and γ_{+}for its outside boundary where

$$
\gamma_{ \pm}(y)=1 / 2 \exp [(y \pm \epsilon) / m+i y]
$$

for all y. The width of the ribbon $\left|\gamma_{+}(y)-\gamma_{-}(y)\right|$, which is measured along a ray from the origin, is an unbounded increasing function of y. The ribbon does not overlap itself because $\left|\gamma_{-}(y+2 \pi)\right|-\left|\gamma_{+}(y)\right|>0$ provided $\epsilon<\pi$.

Received by the editors August 30, 1973.
AMS (MOS) subject classifications (1970). Primary 30 A 70.

Let P_{n} denote the open parallelogram which is the intersection of the strip $\{x+i y: 2 \pi n<y<2 \pi n+\pi\}$ with the strip S. Note that for all n larger than some n_{0} the sector $\alpha<\arg z<\beta$ will contain P_{n}, and that the P_{n} 's are disjoint. Thus the proof can be finished by showing that if $w \neq 0$ then $w \in f\left(P_{n}\right)$ for infinitely many n.

Let $i c_{n}$ be the midpoint of the interval in which $1 / 2 \exp \left(P_{n}\right)$ meets the imaginary axis. Since $1 / 2 \exp \left(P_{n}\right)$ is the interior of one component of the portion of the ribbon lying in the half plane $\operatorname{Im} z>0$, we know that $c_{n}>0$.

Lemma. If $a>0$ then $R_{\pi}\left(a, c_{k}\right) \subseteq \cosh \left(P_{k}\right)$ for infinitely many values of k.

Using this lemma we let $U_{n}=P_{k}$, where $k>n_{0}$ is chosen so large that $R_{\pi}\left(\log n, c_{k}\right) \subseteq \cosh \left(P_{k}\right)$ and P_{k} is disjoint from U_{1}, \cdots, U_{n-1}. Then $f\left(U_{n}\right) \supseteq \exp \left(R_{\pi}\left(\log n, c_{k}\right)\right)=A_{n}$, and, since every $w \neq 0$ lies in infinitely many $A_{n}, f^{-1}(w) \cap\{\alpha<\arg z<\beta\}$ is infinite. Thus $\theta \in J[f]$.

Remark. This proof actually shows that if $\theta \not \equiv 0$ or $\pi / 2(\bmod \pi)$ and if N is any ϵ-neighborhood of a ray from the origin through $e^{i \theta}$, then $f^{-1}(w) \cap$ N is infinite if $w \neq 0$. Had we merely wished to prove the Theorem we could have replaced the P_{n}^{\prime} 's with a sequence of disjoint rectangles $R_{n}=$ $\left\{x+i y: a_{n}<x<b_{n}, 2 \pi n<y<2 \pi n+\pi\right\}$ which lie in $\alpha<\arg z<\beta$ and for which the sequences a_{n} and $b_{n}-a_{n}$ approach ∞. Then $1 / 2 \exp \left(R_{n}\right)$ is the intersection of the half plane $\operatorname{Im} z>0$ with the annulus $\exp \left(a_{n}\right)<|z|<$ $\exp \left(b_{n}\right)$. Since the width $\exp \left(a_{n}\right)-\exp \left(b_{n}\right)$ of the annulus approaches ∞, it is geometrically clear that if $a>0$ and if $c_{n}=1 / 2 \cdot\left(\exp \left(a_{n}\right)+\exp \left(b_{n}\right)\right)$, there will exist infinitely many n 's for which the rectangle $R_{\pi}\left(a, c_{n}\right)$ lies inside $1 / 2 \exp \left(R_{n}\right)$. But when a_{n} is large the boundary of $\cosh \left(R_{n}\right)$ will stay very close to the boundary of $1 / 2 \exp \left(R_{n}\right)$ because then $1 / 2 \cdot \exp \left(-R_{n}\right)$ must lie within a tiny neighborhood of 0 . Thus $R_{\pi}\left(a, c_{n}\right) \subseteq \cosh \left(R_{n}\right)$ for infinitely many n 's. Using this version of the Lemma, the Theorem can be proved by replacing the parallelograms P_{n} in the proof above with the rectangles R_{n}.

Proof of the Lemma. Suppose that $\delta>0$ and let b_{n} be the largest number such that the interior of $R_{\delta}\left(b_{n}, c_{n}\right)$ is contained in $1 / 2 \exp \left(P_{n}\right)$. (Once the width of the ribbon exceeds $2 \delta, b_{n}$ will be positive.) Then some vertex of $R_{\delta}\left(b_{n}, c_{n}\right)$ lies on γ_{+}or γ_{-}, and we shall show that this implies the unboundedness of $\left\{b_{n}\right\}$. Since $\left|\gamma_{ \pm}(y)\right|$ are increasing functions of y there are just two cases: (1) the northeast vertex $b_{n}+i\left(c_{n}+\delta\right)$ lies on γ_{+}, or (2) the southwest vertex $-b_{n}+i\left(c_{n}-\delta\right)$ lies on γ_{-}.

When case (1) holds we have

$$
\begin{equation*}
b_{n}+i\left(c_{n}+\delta\right)=\gamma_{+}\left(2 \pi n+\phi_{n}\right) \quad \text { where } \phi_{n}=\tan ^{-1}\left[\left(c_{n}+\delta\right) / b_{n}\right] \tag{A}
\end{equation*}
$$

Assuming that b_{n} is bounded implies that $\phi_{n} \rightarrow \pi / 2$ because $c_{n} \rightarrow \infty$. Now we divide equation (A) by $\gamma_{+}(2 \pi n+\pi / 2)$. Since

$$
c_{n}=\frac{1}{2 i}\left(\gamma_{+}\left(2 \pi n+\frac{\pi}{2}\right)+\gamma_{-}\left(2 \pi n+\frac{\pi}{2}\right)\right) \text { and since } \frac{\gamma_{-}(y)}{\gamma_{+}(y)}=\exp \left[\frac{-2 \epsilon}{m}\right]
$$

the left side becomes

$$
\left[\frac{b_{n}+i \delta}{\gamma_{+}(2 \pi n+\pi / 2)}\right]+\frac{1}{2}\left(1+\exp \left[\frac{-2 \epsilon}{m}\right]\right)
$$

The right side becomes $\exp \left[(1 / m+i)\left(\phi_{n}-\pi / 2\right)\right]$ and if case (1) obtains for infinitely many n we can equate the limit as $n \rightarrow \infty$ of each side and produce the contradiction $1 / 2(1+\exp [-2 \epsilon / m])=1$.

Case (2) gives
(B) $-b_{n}+i\left(c_{n}-\delta\right)=\gamma_{-}\left(2 \pi n+\pi-\psi_{n}\right) \quad$ where $\psi_{n}=\tan ^{-1}\left[\left(c_{n}-\delta\right) / b_{n}\right]$.

If b_{n} is bounded and (B) holds infinitely often, then dividing by $\gamma_{-}(2 \pi n+\pi / 2)$ and letting n approach ∞ makes $\psi_{n} \rightarrow \pi / 2$ and gives the contradiction $1 / 2 .(\exp (2 \epsilon / m)+1)=1$.

This proves that b_{n} is unbounded. Thus, in particular, if $\delta=\pi+1$ and $b=a+1$ the inclusion $R_{\pi}\left(a, c_{n}\right) \subset R_{\delta}\left(b, c_{n}\right) \subset 1 / 2 \exp \left(P_{n}\right)$ holds for infinitely many values of n. Then when n is large enough the set $1 / 2 \exp \left(-P_{n}\right)$ will lie in a neighborhood of 0 so small that $\cosh \left(P_{n}\right)$ very nearly contains $R_{\delta}\left(b, c_{n}\right)$ and certainly contains $R_{\pi}\left(a, c_{n}\right)$.

Acknowledgement. We are indebted to Peter Colwell for provocative discussions and to Richard Tondra for improving our example.

REFERENCES

1. E. Hille, Analytic function theory. Vol. II, Introductions to Higher Math., Ginn, New York, 1962. MR 34 \#1490.
2. G. Julia, Sur quelques propriétés nouvelles des fonctions entières ou méromorphes (liere Mémoire), Ann. Sci. École Norm. Sup. 36 (1919), 93-125.
3. T. Zinno, Some properties of Julia's exceptional functions and an example of Julia's exceptional functions with Julia's direction, Ann. Acad. Sci. Fenn. Ser. A I, No. 464 (1970), 12 pp. MR 43 \#6414.

DEPARTMENT OF MATHEMATICS, IOWA STATE UNIVERSITY, AMES, IOWA 50010
Current address: Mathematiches Institut der Technishen Universität München, 8 München 2, Arcisstrasse 21, Postfach 202 420, Federal Republic of Germany

