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EVERY DIRECTION A JULIA DIRECTION

BRYAN E. CAIN

ABSTRACT.   Let /(z) = exp(cosh  z).  If N   is any f-neighborhood of

any ray through the origin with slope m ^ 0, oo then /     (w) n N   is infi-

nite if w / 0.

Let /[/]  denote the set of Julia directions of the entire function /.

That is, 0 £ /[/] if, in every sector a < arg z < ß such that a < 6 < ß, f

assumes every complex value, with at most one exception, infinitely often.

Using infinite products Julia [2] has constructed an entire function for

which every direction is a Julia direction.  The example which follows is

more  elementary.

The closed annulus  il/w < \z\ < n] will be denoted A     for n =1, 2,

• • • .  If a, b, 8 > 0  the closed rectangle \x + iy: —a < x < a: b — 8 < y < b

+ 8] will be denoted by  Rg(fl, b).

Theorem.  // f{z) = exp(cosh z)  then /[/] = R.

Proof.   The relations /(F) = {f{z))    and f{z) = f{—z)  imply that if

0 £ /[/]   then -6, 6 ± n £ /[/].   Consequently we can finish the proof by

showing that (0, 77/2) C /[/]  because the set of Julia directions is clearly

always closed.

Now suppose that 9, a, ß  ate given and that they satisfy 0 < 6 < tt/2

and a < 0 < ß.  They will be fixed for the rest of the proof.

Let 5 = \x + z'y: mx — e < y < mx + e\ where m = tan 6 and 0 < e < n.

The function  z —» ̂ exp(ir)  maps the strip 5 onto a ribbon which starts at

the origin, wraps around it infinitely often, and spirals out to infinity.   This

ribbon has y_ for its inside boundary and y+ for its outside boundary where

y±{y)=1A exp[(y + e)/m + iy]

for all y. The width of the ribbon |y+(y) - y_(y)|, which is measured along

a ray from the origin, is an unbounded increasing function of y. The ribbon

does not overlap itself because |y_(y + 2n)\ - |y+(y)| > 0 provided ( < n.
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Let P    denote the open parallelogram which is the intersection of the

strip Sx + iy: 2nn < y < 2rrn + rr\ with the strip 5. Note that for all n larger

than some nQ   the sector a < arg z < ß  will contain Pn, and tnat the P^'s

are disjoint.   Thus the proof can be finished by showing that if w 4 0   then

w £ f{P )  for infinitely many ».

Let ic    be the midpoint of the interval in which Vi exp(Pn) meets the

imaginary axis.  Since V2 exp(P ) is the interior of one component of the

portion of the ribbon lying in the half plane Im z > 0, we know that cn > 0.

Lemma.  If a > 0  then Rn{a, c,) C cosh (P.) for infinitely many values

of k.

Using this lemma we let U   = P., where k > «_  is chosen so large that

R_(log n, c.) Ç cosh (P.)  and P,   is disjoint from l/j, • • • , U  _ j.  Then

f{U ) 2 exp(R (log n, c,)) = A  , and, since every ¡«/0 lies in infinitely

many An, f~\w)<~\ \a < arg z < ß\ is infinite.  Thus 6 £ /[/].   □

Remark.   This proof actually shows that if 8 4 0  or n/2 (mod 77) and if

N is any ¿-neighborhood of a ray from the origin through  e' , then  /"  {w)C\

N is infinite if w 4 0. Had we merely wished to prove the Theorem we

could have replaced the P 's with a sequence of disjoint rectangles R   =

\x + iy: a   < x < b , 2trn < y < 2nn + 77Î which lie in a. < arg z < ß and for

which the sequences a    and bn — a    approach 00.  Then V2 exp(R )  is the

intersection of the half plane Im z > 0  with the annulus exp {a ) < \z\ <

exp{bn).  Since the width  exp (a ) - exp(¿> ) of the annulus approaches 00,

it is geometrically clear that if a > 0   and if c   = !^(exp(a ) + exp(¿> )),

there will exist infinitely many 72's for which the rectangle R„{a, c ) lies

inside Mexp(/?n).   But when  a    is large the boundary of cosh(P. )  will

stay very close to the boundary of ^exp(R ) because then Vi exp(-R )

must lie within a tiny neighborhood of 0.   Thus  RJia, c ) C cosh(R )  for

infinitely many n's. Using this version of the Lemma, the Theorem can be

proved by replacing the parallelograms P    in the proof above with the rec-

tangles R .

Proof of the Lemma.  Suppose that 8 > 0  and let b    be the largest num-

ber such that the interior of R${bn, c )  is contained in lA exp(P ). (Once

the width of the ribbon exceeds 2¿5,  b    will be positive.)  Then some ver-

tex of R${bn, cn) lies On  y+ or   y_, and we shall show that this implies the

unboundedness of \bn\.  Since  |y±(y)|   are increasing functions of y there

are just two cases: (1) the northeast vertex b   + i{c   + 8) lies on y+, or (2)

the southwest vertex —b   + i{c   —8) lies on y_.

When case (1) holds we have
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(A) b- + i{cn + 8) = y+{2nn + cf>n)    where <f>n ■ tan_ t(c„ + $>/èJ.

Assuming that  é>    is bounded implies that ó   —► 77/2 because  c   —► 00.

Now we divide equation (A) by y+(2777Z +n/2).  Since

s* = e(y+(2™ + i) + y-(2™ + ¿)) a*ds-« ^ = exP|3rJ

the left side becomes

r "v*i;{(i.J4
Ly+(277« + 77/2)J        2\ rL   w  J/

The right side becomes  exp[(l/??z + z')(</>   — 77/2)]   and if case (1) obtains for

infinitely many n  we can equate the limit as n —> 00 of each side and pro-

duce the contradiction Vi{\ + exp[-2e/m\) = 1.

Case (2) gives

(B) -b   + i{c   - 8) = y _{2m + 77 - if/J    where xfi n = tan"  [{cn~ S)/bn].

If f?    is bounded and (B) holds infinitely often, then dividing by y_(27772 + tt/2)

and letting n  approach 00 makes xfr   —» 77/2 and gives the contradiction

M(exp(2f/??z) + 1) = 1.

This proves that  b    is unbounded.   Thus, in particular, if ¿5 = 77 + 1  and

b = a + 1 the inclusion #„.(«, c ) C R§{b, c ) C XA exp(P ) holds for infinitely

many values of 72.  Then when 72 is large enough the set lA.exp{—P )  will

lie in a neighborhood of 0  so small that  cosh(P )  very nearly contains

Rffb, c )  and certainly contains  R~{a, c ). fj
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