COMPLETELY OUTER GROUPS OF AUTOMORPHISMS ACTING ON R/I(R)

J. OSTERBURG

ABSTRACT. Let R be a ring with unit, J(R) its Jacobson radical, and assume R/J(R) Artinian. Let G be a finite group of automorphisms of R that induces a completely outer group on R/J(R). Then R is G-Galois over the fixed ring, S, if R is projective over the usual crossed product, Δ , or, if the order of G is invertible in R, or if R is Artinian.

Let R be a ring with identity. We denote the Jacobson radical of R by J(R) and we assume throughout that R/J(R) is Artinian.

We assume that G is a finite group of automorphisms of R that induces a completely outer group of automorphisms on R/J(R). (See Y. Miyashita [1, p. 126].) The crossed product Δ of R with G is $\Sigma \bigoplus_{\sigma \in G} Ru_{\sigma}$ with $(xu_{\sigma})(yu_{\tau}) = xy^{\sigma}u_{\sigma\tau}$ for x and y in R.

The fixed ring S is the set of r in R such that $r^{\sigma} = r$ for all σ in G. We can view R as a left Δ -module by defining $xu_{\sigma} \cdot r = xr^{\sigma}$. In this way, R becomes a bi- Δ -S-module. The Jacobson radicals of Δ , R and S are denoted by $I(\Delta)$, I(R) and I(S) respectively.

Proposition 1. (a)
$$J(\Delta) = J(R) \cdot \Delta = \Delta \cdot J(R)$$
.
(b) $J(R) \cap S \subseteq J(S)$.

Proof of (a). Because $\sigma(J(R)) \subseteq J(R)$ for all $\sigma \in G$, $J(R) \cdot \Delta = \Delta \cdot J(R)$. Thus for any simple, left Δ -module $M \neq 0$, J(R)M is a Δ -submodule of M. Now M is a finitely generated left R-module because Δ is a finitely generated R-module. Nakayama's lemma then shows $J(R) \cdot M = 0$. Since J(R) annihilates every simple left Δ -module, $J(R) \subseteq J(\Delta)$.

Now G is a completely outer group of automorphisms acting on R/J(R). Thus $\Delta(R/J(R), G)$ (the crossed product of R/J(R) with G) has zero Jacobson radical. This was shown by T. Nakayama [4, Lemma 2, p. 204]. Now

Received by the editors April 2, 1973 and, in revised form, September 17, 1973. AMS (MOS) subject classifications (1970). Primary 16A74, 16A50, 16A46; Secondary 13B05.

Key words and phrases. Semilocal ring, group of automorphisms, completely outer Galois group, crossed product.

Copyright © 1974, American Mathematical Society

 $\Delta(R/J(R), G) \simeq \Delta/J(R)\Delta$; hence, $J(R)\Delta \supseteq J(\Delta)$ and so $J(R)\Delta = J(\Delta)$. Similarly, $\Delta J(R) = J(\Delta)$.

Proof of (b). If x is in $J(R) \cap S$, then for some y in R, (1-x)y = y(1-x) = 1. So $(1-x)y^{\sigma} = y^{\sigma}(1-x) = 1$ for all σ in G. Thus $y \in S$ so $J(R) \cap S \subset J(S)$.

Corollary. If a left Δ -module M is completely reducible as an R-module, then it is completely reducible as a Δ -module and conversely.

Proof. Since $\Delta/J(\Delta)$ is a finitely generated R/J(R)-module, $\Delta/J(\Delta)$ is Artinian. If a left Δ -module M is completely reducible as an R-module, then J(R)M=0. So $J(\Delta)M=\Delta J(R)M=0$; then M is completely reducible as a Δ -module.

Proposition 2. The following are equivalent.

- (1) If $j: \Delta \to \text{End } R_S$ is the map associating to each element of Δ its action on the Δ -module R (namely to $\sum x_{\sigma}u_{\sigma}$ associate the endomorphism $r \to \sum x_{\sigma}r^{\sigma}$), then j is an isomorphism.
 - (2) R is a finitely generated projective Δ -module.
 - (3) R is a Δ -generator.
 - (4) R over S is G-Galois (see [1, p. 116]).
 - (5) R^{g} is left Δ -isomorphic to Δ , where g is the order of G.
- (2) \Rightarrow (5). Now $\overline{R}^g \simeq \overline{\Delta}$ as $\overline{\Delta}$ -modules, where g is the order of G (see [4, Lemma 3, p. 205]). The uniqueness of the projective cover implies R^g and Δ are Δ -isomorphic.
 - $(5) \Rightarrow (3)$. This is clear.

- $(3) \Rightarrow (4)$. We show that R over S is G-Galois by proving R is a finitely generated, projective right S-module and $j: \Delta \to \operatorname{End} R_S$ is an isomorphism. But this is true by Morita's theorem. (See [3, Lemma 3.3, p. 100].)
 - $(4) \Rightarrow (1)$. (1) is part of the definition of G-Galois.

Proposition 3. If R is Artinian, then R over S is G-Galois.

Proof. By [4, Lemma 3, p. 205] there is an isomorphism $\overline{\Delta} \to \overline{R}^g$, and hence a Δ -module map $\Delta \to \overline{R}^g$. The natural epimorphism $\pi \colon R^g \to \overline{R}^g$ and the Δ -projectivity of Δ then gives a Δ -map $f \colon \Delta \to R^g$ which is an epimorphism because π is a minimal epimorphism. Since R^g and Δ are both free, rank g R-modules, they have the same R-length, and so any R-epimorphism (like f) is an isomorphism.

Proposition 4. If a left Δ -module M is R-projective and the order of G is a unit in R, then M is Δ -projective.

Proof. Let $\pi\colon N\to N'$ be a left Δ -epimorphism and $f\colon M\to N'$ be a left Δ -map. We want $h\colon M\to N$ such that $\pi h=f$. Now any Δ -module is a left R-module, so by hypothesis there exists an R-map $h'\colon M\to N$ such that $\pi h'=f$. Let g be the order of G. Let $h(m)=\sum_{\tau\sigma=1}u_{\sigma}h'(u_{\tau}m)$. Now h is a Δ -map and $\pi h=f$.

Corollary. If the order of G is a unit in R, then R over S is G-Galois.

If M is a left Δ -module, define $M^G = \{m \in M | u_{\sigma} \cdot m = m \text{ for all } \sigma \in G\}$.

Proposition 5. If R is Δ -projective, then $(R/J(R))^G \simeq S/J(S)$ and $J(S) = J(R) \cap S$.

Proof. We show $\operatorname{Hom}_{\Delta}(R, M) \simeq M^G$ under $f \to f(1)$, if $f \in \operatorname{Hom}_{\Delta}(R, M)$. This is so, because $u_{\sigma}/(1) = f(u_{\sigma} \cdot 1) = f(1)$ for all $\sigma \in G$. Consider the exact sequence $0 \to J(R) \to R \to R/J(R) \to 0$. Since R is Δ -projective,

$$0 \to \operatorname{Hom}_{\Delta}(R, J(R)) \to \operatorname{Hom}_{\Delta}(R, R) \to \operatorname{Hom}_{\Delta}(R, R/J(R)) \to 0$$

is exact. Thus

$$0 \to S \cap J(R) \to S \to (R/J(R))^G \to 0$$

is exact. Hence $(R/I(R))^G \simeq S/S \cap I(R)$.

We now have the following situation: G is a completely outer group of automorphisms of R/J(R) and the fixed ring is $S/J(R) \cap S$. We can show there is a $\overline{d} = d + J(R) \in R/J(R)$, for $d \in R$, such that $\operatorname{tr} d - 1 \in J(R) \cap S$. See the proof of $(1) \Rightarrow (2)$ in Proposition 2. Thus $S/J(R) \cap S$, as a left

 $S/J(R) \cap S$ -module, is a direct summand of R/J(R), as a left $S/J(R) \cap S$ module. Since the Jacobson radical of R/J(R) is zero, the Jacobson radical of $S/J(R) \cap S$ is zero. (See [1, Theorem 7.10, p. 132].) Thus $J(S) \subseteq J(R) \cap S$; hence $J(S) = J(R) \cap S$.

REFERENCES

- 1. Y. Miyashita, Finite outer Galois theory of non-commutative rings, J. Fac. Sci. Hokkaido Univ. Ser. I 19 (1966), 114-134. MR 35 #1638.
- 2. ——, Galois extensions and crossed products, J. Fac. Sci. Hokkaido Univ. Ser. I 20 (1968), 122-134. MR 39 #262.
- 3. K. Morita, Duality for modules and its application to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 6 (1958), 83-142. MR 20 #3183.
- 4. T. Nakayama, Galois theory for general rings with minimum condition, J. Math. Soc. Japan 1 (1949), 203-216. MR 12, 237.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CINCINNATI, CINCINNATI, OHIO 45221