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COMPLETELY OUTER GROUPS OF AUTOMORPHISMS
ACTING ON R/J(R)

J. OSTERBURG

ABSTRACT. Let R be a ring with unit, J(R) its Jacobson radical,
and assume R/J(R) Artinian. Let G be a finite group of automorphisms
of R that induces a completely outer group on R/J(R). Then R is G-
Galois over the fixed ring, S, if R is projective over the usual crossed
product, A, or, if the order of G is invertible in R, or if R is Artinian.

Let R be a ring with identity. We denote the Jacobson radical of R by
J(R) and we assume throughout that R/J(R) is Artinian.

We assume that G is a finite group of automorphisms of R that induces
a completely outer group of automorphisms on R/J(R). (See Y. Miyashita
(1, p. 126).) The crossed product A of R with G is 2@066Rug with
(euy)yu,) = xyauar for x and y in R.

The fixed ring S is the set of  in R such that 7° = 7 for all o in G. We
can view R as a left A-module by defining XU, 1= x7°. In this way, R
becomes a bi-A-S-module. The Jacobson radicals of A, R and S are denoted
by J(A), J(R) and J(S) respectively.

Proposition 1. (a) J(A)= J(R) A=A - J(R).
) JRYNSC J(S).

Proof of (a).” Because o(J(R))C J(R)for allo € G, J(R)+ A=A « J(R).
Thus for any simple, left A-module M £ 0, J(R)M is a A-submodule of M.
Now M is a finitely generated left R-module because A is a finitely gene-
rated R-module. Nakayama’s lemma then shows J(R)+ M= 0. Since J(R)
annihilates every simple left A-module, J(R)C J(A).

Now G is a completely outer group of automorphisms acting on R/J(R).
Thus A(R/J(R), G) (the crossed product of R/J(R) with G) has zero Jacob-
son radical. This was shown by T. Nakayama [4, Lemma 2, p. 204]. Now
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A(R/J(R), G) =~ A/J(R)A; hence, J(R)A D J(A)and so J(R)A = J(A). Simi-
larly, AJ(R) = J(A).

Proof of (b). If x is in J(R)N S, then for some y in R, (1 — x)y =
yl =x)=1. So (1 -x)y"=y°(l —=x)=1forall 0in G. Thus y € § so
J(R) N S C JS).

Corollary. If a left A-module M is completely reducible as an R-module,
then it is completely reducible as a A-module and conversely.

Proof. Since A/J(A) is a finitely generated R/J(R)-module, A/J(A) is
Artinian. If a left A-module M is completely reducible as an R-module,
then J(R)M= 0. So J(A)M=AJ(R)M= 0; then M is completely reducible
as a A-module.

Proposition 2. The following are equivalent.

() If j: A — End R is the map associating to each element of A its
action on the A-module R (namely to Exo u, associate the endomorphism
r— Zxara), then j is an isomorphism.

(2) R is a finitely generated projective A-module.

(3) R is a A-generator.

(4) R over S is G-Galois (see [1, p. 116]).

(5) R® is left A-isomorphic to A, where g is the order of G.

Proof. (1) = (2). Let A = A/J(A)and R = R/J(R). We will show R
a generator. Now R is a finitely generated projective A-module since A
is sem1s1mple Artinian. Since HomA(R A)C HomR(R A)C A we conclude
Hom..(R A) = Eaecu R. (See [2, Lemma 2.5, p. 128].) Thus there exist
/1,“',/ € EUSG UR and x X900, xn € R such that for all ¥ € R

St IE)%, =%, ¥ [(RF)=%XZ u,7,then ¥=%x 3,3 (7,%,)°, for all

X€R. Thus 1= Zizo_(r_ia?i)c'; let d = zi(?ik'i), thentrd =1. So trd -1
€ JRYNS C J(S). Thus er R + J(§) =S, but J(S) is small. Thus t(R)=
S or there is a ¢ in R such that tr ¢ = 1. We conclude that tr:t R — § — 0
splits; hence R is an S-generator. Since End R s = A, we conclude that 4R
is finitely generated projective and § = End,(R). See K. Morita [3, Lemma
3.3, p. 100]. .

(2) = (5). Now R& = A as A-modules, where g is the order of G (see

(4, Lemma 3, p. 205]). The uniqueness of the projective cover implies R

and A are A-isomorphic.
(5) = (3). This is clear.
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(3) = (4). We show that R over S is G-Galois by proving R is a finitely
generated, projective right S-module and j: A — End R is an isomorphism.
But this is true by Morita’s theorem. (See [3, Lemma 3.3, p. 100].)

(4) = (1). (1) is part of the definition of G-Galois. '

Proposition 3. If R is Artinian, then R over S is G-Galois.

Proof. By [4, Lemma 3, p. 205] there is an isomorphism A — R, and
hence a A-module map A — R®. The natural epimorphism #: R€¢ — R€ and
the A-projectivity of A then gives a A-map f: A — R& which is an epimor-
phism because 7 is a minimal epimorphism. Since R® and A are both free,
rank g R-modules, they have the same R-length, and so any R-epimorphism

(like f) is an isomorphism.
Proposition 4. If a left A-module M is R-projective and the order of G
is a unit in R, then M is A-projective.

Proof. Let 7: N — N’ be a left A-epimorphism and f: M — N’ be a
left A-map. We want h: M — N such that 7h = f. Now any A-module is a
left R-module, so by hypothesis there exists an R-map »': M — N such that
mh'=f. Let g be the order of G. Let h(m)=2, __ u_h'(um). Now hisa
A-map and 7h = {.

Corollary. If the order of G is a unit in R, then R over S is G-Galois.

If Mis a left A-module, define M® = {m € Mlu_ + m = m for all o € G}.
Proposition 5. If R is A-projective, then (R/J(R))C = S/](S) and J(S) =
JR) N'S.

Proof. We show Homp(R, M) =~ MC under f — fQ1), if [ € Hom,(R, M).
This is so, because u_f(1)= f(u_ - 1)= f(1) for all 0 € G. Consider the
exact sequence 0 — J(R)— R — R/J(R) — 0. Since R is A-projective,

0 — Hom,(R, J(R)) — Hom,(R, R) — Hom,(R, R/J(R)) — 0

is exact. Thus
0—5SnJR)—S— R/JR)N® — 0

is exact. Hence (R/J(R))® = S/S N J(R).

We now have the following situation: G is a completely outer group of
automorphisms of R/J(R) and the fixed ring is S/J(R) N S. We can show
there isa d =d + J(R) € R/J(R), for d € R, such that trd -1 € J(R)N S.
See the proof of (1) = (2) in Proposition 2. Thus S/J(R)N S, as a left
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S/J(R) N S-module, is a direct summand of R/J(R), as a left S/J(R) N S-
module. Since the Jacobson radical of R/J(R) is zero, the Jacobson radi-
cal of S/J(R)NS is zero. (See [1, Theorem 7.10, p. 132).) Thus J(§)C
J(R)N S; hence J(S)= J(R)NS.
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