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THE EFFECT OF RETARDED ACTIONS

ON NONLINEAR OSCILLATIONS

Y. G. SFICAS AND V. A. STAIKOS

ABSTRACT.  We study the oscillatory and asymptotic behavior of

nonlinear retarded differential equations of the form  x     (t) +( — 1)"    pit)

•0(x[g(i)J) =0  under certain conditions which do not hold in the particu-

lar case  git) a t of ordinary differential equations.

The oscillatory and asymptotic behavior of functional differential

equations have been the subject of numerous studies.  Among the papers

dealing with the subject, we refer in particular to [l]—[6] and [8]-[l2],  In

most of them [l], [2], [6] and [8]—[12], the given results ensure the same

oscillatory and asymptotic behavior for a functional differential equation

with that of the reduced ordinary differential equation.  On the other hand,

in [3]—[5], results concerning oscillations generated by delays are estab-

lished for linear retarded differential equations.  The study of the oscilla-

tory character of a retarded differential equation in this direction is very

interesting in applications.  For example, oscillations caused by delays

should be seriously taken into account in studying the motion of a con-

trolled craft moving with increasing velocities, where it is possible to have

a sudden release of oscillations leading to instability (cf. Minorsky [7,

p. 518]).
The purpose of the present paper is to study nonlinear oscillations

generated by retarded actions.  More precisely, we deal with the oscillatory

and asymptotic behavior of bounded solutions of a retarded differential

equation of the form

(*) xM{t) + {-l)n+lp{t)cf>{x[g{t)]) = 0

under certain conditions which do not hold in the particular case g{t) = t

of ordinary differential equations.  The continuity of the real-valued func-

tions p on [tQ, 00) and 0 on the real line R as well as sufficient smooth-
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ness for the existence of solutions for ail large  t  will be assumed without

mention.   In what follows, we consider only such solutions which are non-

trivial for all large /.  The oscillatory character is considered in the usual

sense, i.e. a continuous real-valued function which is defined for all large

t  is called oscillatory if it has no last zero, otherwise it is called nonoscil-

latory.

We introduce the following conditions:

(i) p  is nonnegative;

(ii) g  is differentiable on the half line  [/„, oo) such that

g{t) < t     for every t > t  ,

g'{t) > 0    for every  t > tQ,

hm   g{t) = oo;
t — oo

(iii) 0 is nondecreasing and such that for any y ^ 0, ycp{y) > 0.

Recently, Ladas, Lakshmikantham and Papadakis [5] have obtained

the following result concerning the linear case, i.e. the differential equation

(L) x("Xt) + (-l)n+1p{t)xlg{t)] = 0.

Theorem 1.   Consider the linear differential equation  (L) subject to

the conditions  (i), (ii) and

(Q lim sup   I '      [g{i) - g{s)]n- lp(s) ds>{n-l)\
I—oo     -'g(r)

Then, every bounded solution of (L) is oscillatory.

It is remarkable that in the nonlinear case this theorem fails, as the

following example shows.

Example 1.   The nonlinear equation

x"-(4/9)r4/3IXv/í)39 = o,     t>o,

admits the bounded nonoscillatory solution x{t) = t~      , although, as it is

easy to verify, it satisfies conditions (i), (ii) and (C).

As we will show below, the above theorem remains valid in the nonlin-

ear case under the additional condition

C\   dy ,. i—1   dy
(C.) Hm —¡— =«<oo    and       hm —— = b < oo.

Moreover, our result requires a weaker condition than (C), namely the fol-

lowing one
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(C  ) Hm sup   P     [g{t) - g{s)]"-lp{s) ds > 0.
2' (_oo       J Sit)

We notice, further, that condition  (C) in Theorem 1 cannot be replaced by

condition  (C2), as it follows by the example.

Example 2.   The linear equation

x" -{l/t2)x{t/2) = 0,       t>0,

admits the bounded nonoscillatory solution x{t) = l/t, although condition

(C2) is satisfied, since

Theorem 2.   Consider the retarded differential equation {*) subject to

the conditions  (i), (ii) and (iii).  Then:

(a) Under condition (CO, all bounded solutions of {*) are either oscil-

latory or tending monotonically to zero as  t -» o* together with their first

n — I derivatives.

(b) Under both conditions  {C A and (CO, all bounded solutions of {*)

are oscillatory.

Proof. Let x be a bounded nonoscillatory solution of (*). This solu-

tion can be supposed with domain [tQ, oo) and positive, since the substi-

tution u = — x transforms (*) into an equation of the same form satisfying

the assumptions of the theorem. Obviously, we can choose a t j > i. such

that g{t) > tQ for every t > ij which, by (*), gives (-l)"x("H0 > 0 for every

t > t., where x (f) is" not identically zero for all large t, since, by (CO,

this holds for p{t). Moreover, for some  t2 > / ¡,

(1) {-l)kx(k\t) > 0    for every  í>¿2        (/fe = 1, 2, • ■ • , n).

Indeed, in the case where for some k, 0 < k < n, x(-k'){t)x(-k + l){t) > 0 for all

large t, a simple application of Taylor's formula leads to the contradiction

Vimt^ocx(-^ = °°-

Now, by Taylor's formula

,  .        ,' x'{v)( .      x\v)( -2 x^-l\w)( ,„_i
x{u) - x(0 = ——- {u - v) + -^rj-{u -  V)     +  • ■ •  + —--— \U-  V)

1! 2! (n - 1)1

= y> x'(0(^ - «) + bjlf x'(t;)(i. - «)2 + • • • + 7--~ ¿n - l Xw){v -u)"-1
1! 2! (w _ 1)!

for every  u, v with t2 < w < v  and some if  with u <w .< v.  Thus, by (1),
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x{u) - x{v) >\   1}"      x^n-l\v){v -u)"-\        t,<u< v,"(«-1)1 ' 2-      -

and consequently,

(2) *[g(s)] - xlgU)] > k l)"~l x("-"[g{t)][g{t) - g{s)]"- \       t,<s<t,
{n - 1)! 3

where  t,   is chosen so that   g{t) > t2  for every t > t?.

Next, we consider the function z defined by

z{t, s) = {-l)"{x^Xs)-x*-"[g{t)\) [sXUfhl^du
Jt     4>{x[g{u)])

tot every  t, s  with g{t) < s < t  and t > t,.  Obviously,

(3) At, t) = 0 = z{t, g{t))    {ot every  t > i,.
3

Calculating the partial derivative of z{t, s) with respect to s   and sub-

stituting x     (s) from  (*), we obtain

dz,        . ,\ ,.  ,  ,   .,.   As *'LgU)]g'U)
-(..,) = ̂ )0UU(s)])/i^-[-(-r^

+ (-inxfa-^,)-x«"-^l)])XYrj)!gla)-
0(4c?(s)])

Hence, by (1) and (iii),

ff(i, s)>?(.) p x'[g(,)]g%) ¿«+(- n- v- i>[g(A] *'yy *}
M Jt 0ULg(-s)J)

=  pWULgU)] - X[g{t)\) +  (- ir-ly(n-l)[g(¿)]x[g(s)]g(s\
0(4g(s)J)

and consequently by (2),

^¿S)>(-l)',-1xÍB-1)Ls(í)]
ds

'.. \.git)-g{s)r-1 xTg(5)]g'u)l
pis)-+ -

(«-!)! 0(*LgU)])j

for every  t, s  with git) < s < t  and t > t,.

Integrating the last inequality from g{t) to / and taking into account

(3) we obtain

0 = z{t, t) - z{t, g{t))

x'[gjs)]g'{s)

0(x[gU)])
,    .«-lb,   i)r ,n[ft      i vWd-ít'H""1 .      r    *'W>-"-¥"   "Uí p(s)-;---¿s + ——

- S      p«(0P (w- 1)! Jsit)   0(x|
¿s
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or

for every / > /,.

In the case where lim      jc(í) is positive, it follows that

... ,. fxisit)]        dy
(5) lim      I   r t -= 0,
K ' t^oo   Jx[gigit))] 0(y)

and consequently, by (4),

(As lim sup H      IgU) - g(s)]" * V*) ¿s < 0.
w r—oo     •'gtO

Hence, under condition (C2), x tends monotonically to zero as  t -» oo.  More-

over, a simple application of the mean value theorem, by virtue of (1), shows

that the n - 1   first derivatives of x  also tend to zero monotonically as

t -> oo.  This proves (a).

To prove  (b), we observe that (5) and consequently (6) can be also ob-

tained by condition  (Cj).  Thus, under conditions (Cj) and (C2), there is

no bounded nonoscillatory solution of (*).

The authors wish to express their thanks to the referee for his helpful

suggestions.
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