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NOTE ON BOOLEAN ULTRAPOWERS

MIROSLAV BENDA

ABSTRACT.   The paper gives a characterization of ultrafilters in

Boolean algebras which make Boolean ultrapowers saturated.   The

description agrees with the definition of good ultrafilters if the Boolean

algebra is atomic and is weaker if the Boolean algebra is atomless.

The aim of this note is to prove a result similar to a theorem of Keisler

[l] which says that an ultrafilter is good iff powers reduced by it are satu-

rated.  Mansfield proved in [2] that if one defines the notion of a good ultra-

filter in a Boolean algebra in a manner analogous to the ordinary definition,

one can prove the implication from left to right by imitating Keisler's  argu-

ment.   At about the same time I observed that with this definition of goodness,

it is not straightforward to prove the other implication, and I defined a notion

which permits complete generalization of Keisler's theorem to Boolean ultra-

powers.   Whether the notion of goodness is truly weaker than Definition 4.1

of [2] is open.

We will define Boolean ultrapower of a structure A in a different form

than the one used in [2].   Given a complete Boolean algebra, we say that

X C B - |0j  is a partition if x O y = 0 whenever x, y £ X, x¿ y, and Ux = 1

{\JX is the least upper bound of X in B, and  x n y  is the meet of x and y

in B).   For a set A we define A        to be the set of all functions into A

whose domain is a partition of B.   Given a relation  R{', •) on A, define, for

/>g^(B),

\\Rif> g)|| = LH*nyl*eDom A   ye Dom g  and   R{f{x), g{y))\.

This definition can be extended to other relations and formulas in the

natural way.   Defining H{f), for / £ A      , by

if-\a)     if  aeRange(/),
w(/)U) = {£~

if not,

(B)
it is seen that  H{f) is a member of Mansfield's  A        and that H provides a
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B-isomorphism of these two definitions.   Ours seems to be more analogous

with the definition of ordinary ultrapower, while Mansfield's is related to

Boolean-valued models for set theory.

Given partitions   P., • • •, P    in a Boolean algebra B, we denote the

partition {x. n •• • C\ x  \x . £ P. for i < n\ - \0| by A" n P..   We say thatr 0 72l77— J 1=0       I J

an element b £ B is a part of a partition P in B if b = U X for some X Ç P.

Definition. An ultrafilter D is said to be /<-good iff: for every X < k, fot

every function f: S (À) —* D for which there are partitions   Pafor a < X such

that /(s) is a part of A        P   for every s e S AX), there is a multiplicative

function g: 5 (a) —► D, g < /, and a partition P so that g(s) is a part of

P A A       P  , and for every  p £ P, the set {a|g(a) n p /= 0\  is finite.

Remark.  If B = S(/) then this notion coincides with the usual notion of

goodness.   If we have a decreasing function /: S  (À) —» D, then f{s) is a

part of the partition íÍ zÎ|z £ l\.   So there is a multiplicative function g: S  {X)

-^ D refining /.   Hence this definition is not weaker.

Let us now assume that D is a K-good ultrafilter in the old sense and

let /: S (À) —» D.   Let g be a multiplicative refinement of /.   We can assume

that [a\i £ g(iai)i is finite for every i £ I; thus, taking P to be \{i\\i £ l\, we

see that if  B = S{I), then the above notion  of goodness agrees here with the

ordinary one.

Theorem. An ultrafilter D in the Boolean algebra B  is  K-good iff

kr    /u is K-saturated for every structure A.

Proof. Let us assume that D is a K-good ultrafilter, that A < k and $ =

\<p {x,f /D)\a < A}is a set of formulas in the language of L(.V yD) which

is finitely satisfiable. (/ /D stands for a finite sequence of elements from

A(ß)/D.)  Thus we have that for each s £ S  {X),

f{s) Ox)   A   0aU fa) £ D.

By [2, Theorem l.l], f{{a.\) is a part of the partition   P   = A Df     (the meet

of domains of the functions occurring in the sequence /   ).   Since  cp    =

(3v)A       4> ivi I   ) contains as constants only the functions from some sequence

/    for some a £ s, we see that f{s) is a part of A        P   for every s £ S (À).
i a ' a es    a. > ur

By the goodness of D there is a multiplicative  g: S  (À) —> D, g < /, and a

partition P which satisfies that for each p £ P, s   = ía|g(a) n p ?= 0| is
P

finite.   Let us consider the set X   = \x\x = a Pi p / 0 fot some a £ /\aes   PaK

It is clear that  Ux   = P and that it is a disjointed set.   Thus  X = Uûep^i)
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is a partition in B.   For every x £ X let t{x) = \a\x < g{a)\.   If x < p (for

every x£X such a p £ P   is  unique) then   Z(x)C s   .   Because  g(sô) is a

part of  PA A aes    Pa, we see that by multiplicativity of g, x < g{t{x)) fot

P
x £ X.   Now g{t{x))< f{t{x)).   Because

x ¿0     and    x < f{t{x)) <3">aa4>*>. 7.)

we have that for a. £ t{x) there is a d , a sequence of elements from the do-

mains of /   , so that x < d  for a £ t{x) and

A^^aAxM-Jaida)).

We define h{x) to be an element of A for which At= A       ,  sd>  {h{x), f   {d ))

holds.   It is now clear that  \\<pa{h, f   )|| > x whenever a e r(x).   But

Ui*lae *(*)! = g(iaS)£ o.

This shows that   \\<f>  {h, f   )\\ £ D for every a< A.   For the other implication

we need a lemma.

Lemma.   Let \A   \a< k\  be a disjointed set of nonempty sets, and let 'f

be a function on S  {k) such that f{s)C H       A   , and if s   C s and («,,•••,

a   ) £ f{s), then {a \i e s ') £ f{s  ).   Then there are functions  T   (a < k) such

that:

(i)DTa = Aa;

(ii) if s = \al,---, aj £ SjK)and (pv •• •, &n) € ^a£sAa, then

(«!>••-. an)£f{s)iffr\i = lTa{a.)^0;

(iii) if S C k, \S\ >oj, then C\aeS TJaJ = 0 for any a^£ Aa (a e S).

Proof.  We can   easily define   (by  induction) functions   Tn   on

Ui   i     II       A   so that ÍT"((a,, •••, a  ))f« < ¿>, a. e A    ! is a disjointed

set, and if s = \a.\i < n\ and a. £ Aa , then
i

T"{{aQ, •■•,an_l))¿0    iff(a0, ..., an_1)£f{s).

Let

Tá(") =    U   iTn{-<a0>  ' ' ' * V Ma0 ' • *   an- 1> £     U        II    A,

a occurs in (aQ, • • • , a^_ x)>

for a e A   .   T  's satisfy (i) by definition.   To prove (ii) let s = {a    •••   a      !,
Ot OS 0 72— 1

and let (a Q, ■■-,an_ ._) e IIae<| Aft.   If  <«„, • • •, an_ ?) £ f{s) then

T"«a 0, •••, an_ j )) ^ 0 and T"((a0, ••-, an_ x )) Ç Ta (a.) for every ¿ < «
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by definition.    Hence C\ .      T   {a .) ¡= 0.   On the other hand if O .      T    {a .)¡¿
J 7 < n     a .     i i < n     a..     i

i i

0, then for some m, some r = \ß \i < m\, and some b. £ A fí  such   that

{b\i < m) £ f{r), we have that

0/Tm{{bQ, ■■■,bm_l))C r\Ta{a).
i<n

By the manner in which we have defined the T„ 's, it follows that a. £ \ b. I j < m\ for
■ a. i j ' '

every  i < n and s C r.   By the property of / we have that

{b.\j£s) = {a.\i£s)£ f{s).

For (iii) we let S be an infinite subset of k and let a   e A   for every a £ S.
a a J

If (|     ,. T (a ) fL 0, then for some m < a>, some s = \a.\i < m\, and some

b. £ A     fot i < m, we have
z a.

7

o¿m<v-.¿m_i»c n Ta{aa).
aeS

But this is a contradiction since this would mean that \a   \a £ S\ C \b.\i < m\.
a1 —i'

We now turn back to the proof of the Theorem.   Let D be an ultrafilter

in B having the property that A      /D is K-saturated for every A.   Let

/: S  (A) —* D be a decreasing function, and let  P   for a < X be partitions in

B such that f{s) is a part of Aa     ^a^OT every s £ S  (À).   Using the just

proven lemma, we can find functions   T   defined on P   so that

(1) if s = !a0, • • •, an_j} £ SJX) and a. £ Pa, then D¿< „a. ¿ 0 and

ni<na.<f{s)iffni<nTa{a.)¿0,and
i

(2) for every S C k, \S\ = <u, if a^e Pafor every a £ S, then C\aes^a^aa)~ ®m

It is quite clear that the functions   T    can be chosen so that Ran(T) C

S{I) tot some /.   Let us consider the structure  A = {S{¡), C, 0), where 0 denotes

the empty set.   The set of formulas v C T„/D A v /= 0 (these formulas are

from the language   L(A^   '/£>) since Ta's   are elements of S{Iy   ') is clearly

finitely satisfiable in \     /D.   In fact

llo^A   v^O A*Ç TTl =[j} n Pali) Ta{Pa)¿o\=f{s)£D
La.es _III ' aes aes I

as follows from (1).   Hence, by K-saturatedness of A*   '/D, there is a

T £ S{I)(B) such that \\T ,= 0|| A (|T G Tj £ D for every a < X.   Let  P =

Dom(T) and let

g(s) = ||r¿o||A fi I^CT.B.
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It is quite clear that g is a multiplicative function from S  (X) into D.   By

Theorem 1.1 we have immediately that g{s) is a part of the  partition

PA A        P .   If 0/ pAf]       p  < g{s) tot some p   £ P   {a £ s),  then
ol€s    a aes    a— ° a        a. *

0£ T{p)çC\aesTJ.pa); hence by (1), C\aes Pa < f{s).   From this it follows

that g < /•   It remains to prove that ja|g(a) n p £ 0\ is finite for every p £ P.

Indeed, if for infinitely many a 's \\T = 0|| A ||T Ç Ta|| Ap/0, then for

infinitely many a's there is a pa£ Paso that T{p)C Ta{pa) and T{p)¿ 0.

This is impossible by (2).   The proof of the Theorem is completed.
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