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NORMAL MOORE SPACES IN

THE CONSTRUCTIBLE UNIVERSE

WILLIAM FLEISSNER 1

ABSTRACT.    Assuming the axiom of constructibility, points in

closed discrete subspaces of certain normal spaces can be simulta-

neously separated.   This is a partial result towards the normal Moore

space conjecture.

The normal Moore space conjecture states that every normal Moore space

is metrizable.   This is known to be not provable from the usual axioms of

set theory, since Silver [4] shows that Martin's axiom with the negation of

CH implies the existence of a separable nonmetrizable normal Moore space.

In this paper we consider the situation under Gödel's axiom of constructi-

bility {V = L).

Bing [l] shows that a normal Moore space is metrizable iff it is collec-

tionwise normal.   Moore spaces have character XQ (i.e. are first countable).

The following is then a partial result towards proving the normal Moore space

conjecture in L.

Theorem (V = L).  If X is a normal Hausdorff space of character < X.,

then X is collectionwise Hausdorff.

Definition.  A space is collectionwise Hausdorff {CWH) iff every closed

discrete set of points can be simultaneously separated by disjoint open sets.

Let   CWH(k) be  CWH restricted to sets of cardinality < k.

Remarks. 1. The Theorem shows consistent Bing's conjecture [2] that

normal Moore spaces be CWH.   It shows in fact that in a normal character X,

space, a discrete collection of countable closed sets can be simultaneously

separated by the device of shrinking each closed set to a point, which then

is of character X,.
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2. Bing [l] shows that there always is a normal space of character

2   ' which is not CWH.

3. Tall [A] shows the consistency of CWH(k) for all k < X     , using

forcing rather than L.

A. The author has constructed a normal CWH, not collectionwise nor-

mal space of character c.

5. The Theorem implies that every locally compact normal Moore space

is metrizable.

6. Kunen asks whether V - L can be weakened to GCH.

Let us fix X, a normal Hausdorff space of character X..   We will prove

CWH(k) for all k by induction on k.   CWH(Xq) is a consequence of the

regularity of X.   The same argument, using normality, yields:

.  . A countable, closed, discrete collection of closed sets can be
(*) ...

simultaneously separated by disjoint open sets.

For singular k of cofinality XQ (cf(k) = X ), CWH(k) follows from (*) and

the induction hypothesis. Henceforth, we will implicitly assume CWH(A) for

X< K.

Definition. A set C C k is cub (closed, unbounded) iff C is unbounded

and closed in the order topology.   A set A C k is stationary (alternatively,

Mahlo) iff A n C /= 0  for all cub C.   It is easy to show that the intersection

of 2 (in fact, of < cí(k)) cub sets is cub, hence the intersection of a cub set

and a stationary set is stationary.

Cub sets can also be characterized as follows.   For B C k, define  B {a.)

to be the greatest ß £ B such that ß <&, ii such a ß exists.   Define a -^ß ß

iff a n B = ß O B so that B*{a) = B*{ß) if defined.   Then B is closed iff

B (a) is always defined, and B is unbounded iff each ~„ equivalence class

has cardinality < k.

To simplify notation, assume that k is an arbitrary closed discrete sub-

set of X, so that if we separate k we may conclude CWH(k).   For f: k—> a>.,

let /"(a) be the /(a)th basis set at the point a.   Then any separation U, V of

H, K C k has a refinement that is coded by an /: k —> a>. •   Let W'a =

\J\fniß): ß < a}.

We will go through k assigning points to H and K, considering initial

segments   W1   of potential separations, and destroying them if we can.  For

regular k we will assume that  k C X witnesses 1 CWH(k), and conclude from

Lemma 1 that each / can be destroyed on a stationary set.   Then using the

combinatorial principle (Lemma 2) to tell us which / to consider at stage a,
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we will, in Lemma 3, define H and K that cannot be separated—contradicting

the normality of X, thus establishing CWH(k).

Lemma 1.  Either A , = |a < k : W'   n k / a\  is stationary for all f: k —»

a),   or the points in k can be simultaneously separated.

Proof.   If A , is not stationary, there is a cub C such that a £ C implies

"/ n k = a.   This means that there is a g so that g"(a) n f {ß) = 0  for all

ß < C (a).   By the induction hypothesis there is an h so that a -\-c ß implies

hU{a)n ¿>"(/3) = 0.   Then /#(a)n g#(a)n A#(a) separates the points of k.

Define a stationary system to be a function A:    À —> P{k) such that

k > X, A, is stationary for every /, and

(**) /7a = gra ->A   n (a+ 1) = Ag n (a + l).

By (**), a e A    is meaningful whenever  dom(/) D a-   ff K cannot be

separated, then the A defined in Lemma 1 is a stationary system.

Lemma 2 (V = L).  // A is a stationary system and k is regular, then

there is a $: S C k —♦ (J Í aa, a < k ¡ sz/cA íeaí:

(i) 0(a): a —» a.

(ii) For all f £ KX, B, = ia: 0(a) = / f a|  is a stationary subset of A,.

If Af = A for all / £ KX, then Lemma 2 is Jensen's Q(A) [3]. We follow

Jensen's proof, which uses the ideas of elementary submodel, transitive

collapse, and the condensation lemma for L.   The idea of the proof is as

follows.   L has a very nice well ordering <•   We define 4>(a) = / e aa where

(/, C) is the <-first such that a £ A ., C is cub C a, and B( n C = 0 .   If

there were a counterexample to the lemma, there would be a <-least one

(/., C_).  With ordinary set theory it is easy to show that for a cub of a's,

f   ( a £   a and Cn n a is cub in a.   Moreover, assuming V = L, we get

(/   T a, C   T a) is the <-first counterexample for a cub C' of a's.   But then

B,   = C'n A      is stationary, a contradiction.
10 '0

Proof. Define $(a) by induction on a.   0(a) = / where (/, C) is the <-

first pair (if there is one; if there is none, leave 3>(a) undefined) such that

1. / £ aa, C is cub in a.

2. If (g, D) < {f, C) satisfies 1, then there is  ß C a such that 0(/3) =

g 1 /3 and ß £ D Pi A   .

3. a e A..

We claim $ works.   If not, let (/n, Cn)be the <-first counterexample.
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Define a continuous monotone increasing sequence  Ma, a < k, of elementary

submodels of  L        containing A and (/     C.), such that Ma n /< € OR and

card M   < k.   Let tt   be the transitive collapse of M  , and let 8{a ) be 77a(/<).

Then

(a) C'= ÍS(a): a < k\ is cub in k,

(b) for f£KXn Ma, TTa{f) = / r ¿5(a),

(c) for C £ P{k) n Ma, 77a(c) = S (a) n C.

Thus for aeP', (/„ H a, CQ n a) is <-least such that 1 and 2 hold.   If

a e C'n A, , 3 holds as well, so <5(a) = /   T a, a contradiction.
' o

Lemma 3 {V = L). CWH(A) for all X < k implies CWH(k) for regular k.

Proof. Define H, K, Ufa, Vfa by induction on a.

Ufa= \J\f*{ßhß<a, ße H\,       v'a = \J\f*iß): ß < a, /S e K}.

Then  Wfa = Ufa U V^.   Suppose ß has been placed in H or K for all ß < a.

Put a in W unless $(a) is defined, in which case  W  'a) n /< - a /= 0   and has

a least element v(a).   If jy(a) e £/*(a), place  iv(a) in K; place it in W other-

wise.   Put ß £ v{a) - a in H.   By the regularity of k, \a : ß < a —> v{ß) is

not defined or  v{ß)< 0-\ is a cub C".

Ii H and K could be separated, they could be separated by some /".   By

Lemma 2, there is an a £ C" such that $(a) = / fa.   Then, if v{a) £ H, it is

a limit of points in the open sets of the cover /" of K, and similarly with H

and K interchanged.   H and K ate closed sets that cannot be separated.   This

contradiction follows from the assumption ~l CWH(k).

One of the ways that the regularity of k is vitally used in the above

proof is in the proof of Lemma 3, where C" shows that our arbitrary ordering

of a subset of X does not matter.   We will use the following definitions to

consider various orders on subsets of singular k.   Let S C kC X, and let

p: S —> k be one-to-one.   The following depend on S and p.   Redefine W'a as

Ui/#(j6): p{ß)< a and ß £ S\, and let Dfa=Wfa n\ß:p{ß)>a and ß £ S\.

Call / thick wrt S, p if there is an a such that card D'a > a; f is thin if not.

Lemma 4 (GCH). For every S, p there is an f thin wrt S, p.

Proof.  If not, we can repeat the argument of Lemma 3 to show X is not

normal.   Define H and K by induction using p and the Gô'del pairing function

a (-» p.., a2), which has the property that a < max(a+, a+).   At stage a

consider (if meaningful) the ajth function /: a   —> co., and assign (if possible)
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a new point from D      to H or K to destroy /.   Assign p~1\a\ arbitrarily if

it exists and is not already assigned.   No g    separates H and K, for at stage

a only card a points have been assigned, so by thickness and GCH (Gödel:

V = L —» GCH), there was some a tot which it was meaningful and possible

to destroy g.

We need to choose S, p carefully.   Because k is singular, there is a set

C = \c   : a < c({k)\ of cardinals > cf(/<) cub in k of order type cf(/<).   Let

B    = \y: y = cf (k) • 8 + a for some  8 < ca \.

Then B   's are disjoint subsets of k such that B    C c  , and card B    = c   .
a ' a a' a a

Lemma 5 (GCH). CWH(A) for all X < k implies CWH(k) for k > cf(x) > XQ.

Proof. Define S., p., /;, for i £ co, inductively.   Let SQ = k, pQ the

identity.   Let /. be thin wrt S., p..   Define 5.  , = Uí¿) *: a e C\.   Then
* ' i i   r i 7+1 a

Lemma 1 separates S. - S.  ..   Using this and (*) we can separate

UÍS.-S-  ,. i £ cú\.   It is sufficient to show l)\S.- S.  , : i £ <o] = k, or
w       l 7+1 ,} 7+1

equivalently, C\\S .: i £ co\ = 0 •   Let p[     map D 1   one-to-one to ß  , and let
7 7+1 c a a

p.  j be a single valued p'.  r   Then for ß £ DJ, p.{ß)> a. > p.    (ß).   Since

there are no infinite descending sequences of ordinals, (\S. = 0 .

This completes the proofs of the induction steps, so the Theorem is

proved.
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