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BOREL STRUCTURES AND INVARIANTS FOR MEASURABLE

TRANSFORMATIONS

JACOB FELDMAN1

ABSTRACT.   It is shown that, in a certain sense, there is no possibility

of getting a complete set of conjugacy-invariants for measure-preserving

transformations of a probability space.

1. Introduction.   One of the central problems of erogodic theory has

been to find a complete set of conjugacy-invariants for the Lebesgue mea-

sure-preserving transformations of the unit interval or for some reasonably

large subclass thereof.   A recent important breakthrough by Ornstein [8] is

the theorem that the Kolmogorov-Sinai entropy is a complete invariant for

the Bernoulli transformations.   On the other hand, in the larger class of Kol-

mogorov transformations, Ornstein and Shields [lO] constructed an uncount-

able family K of mutually nonconjugate transformations all having the same

entropy.   In the present paper, it is shown that in a certain sense there is no

possibility of getting a complete set of conjugacy-invariants for the measure-

preserving transformations, or even for the family J\.   Qualifications like

"a.e." will be frequently and shamelessly omitted in the subsequent exposi-

tion.

2. Topologies on measurable transformations.   I now describe several

natural topologies on measure-preserving transformations.   This will all be

done on the unit interval  C with Lebesgue measure À.   Since it is only the

measure-theoretic structure of (C, Á.) which concerns us, it would be inap-

priate to topologize the transformations by any of the standard topologies on

transformations considered as real-valued functions.

Consider first the operators of norm  < 1  on LAX).   These form a Polish

(= separable and completely metrizable) space in the strong operator topology.
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The weak operator topology is strictly coarser; however, it is easily verified

that the Borel sets are the same for both topologies.   Multiplication is con-

tinuous for the strong operator topology on isometries, or indeed on any uni-

formly bounded set of operators.

The isometries form a closed subset in the strong operator topology.

The unitaries, i.e. the invertible isometries, form a Borel subset in the weak

topology, and inversion is weakly continuous, since  U  is unitary if and only

if U*U = I, in which case   Í7* = Ii-1.   Furthermore, the weak and strong to-

pologies agree on the unitaries:   see [4] for this and some of the foregoing

facts.

Next, consider partial isometries of the form  UAf = foT   tot a measure-

preserving transformation T of the unit interval.   Since they may be charac-

terized by the property  U{fg) = {Uf){Ug) tot bounded /,  they form a strongly

closed and, therefore, Borel subset of the isometries.   Thus the previous

topologies may be transferred to the set of measure-preserving transformations,

and the Borel structure induced is standard in the sense of Mackey [7].   When

I speak of the Borel structure on measure-preserving transformations, this

is the Borel structure which is meant.   The set of all invertible measure-pre-

serving transformations on  C will be called T,  and the Borel sets will be

called  S.

In [5], Halmos makes T into a topological group in two different ways.

One way just induces the aforementioned topology; however, as a topological

group,  T is complete.   This is what Halmos calls the weak topology on T.

A pleasant consequence is the following:

2.1 Proposition.   The conjugacy class of each  T eT is a Borel set.

Proof.    The map  {S, T)   1—» STS~    is jointly continuous, since inver-

sion is continuous in T  and multiplication is jointly continuous.   Then,

since T is a Polish space, each conjugacy class is a Borel set [2].   D

The second topology used in [5] is there called the uniform topology;

this is implemented by the invariant distance function d{S, T) =

sup^À(SA A TA).   This makes  T into a nonseparable complete metric group.

The uniform topology is finer than the previous one, and consequently the

Borel sets for this topology (which I will call uniform Borel sets, and de-

note by U) include the previous Borel sets, and in fact the inclusion is

strict.   However, we have the following:

2.2 Proposition.    For each a>0,  the set N (T) = {S: d{S, T) < a\ £ 5.
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Proof.   Choose a dense sequence of measurable sets  A   , A   , • • • C C.

Then it is easy to see that N  (T) = \S: XÍSA    A TA) < a fot all n\ =
' a 77 »J   —

O \S: X{SA   A TA  ) < a\, which is a closed set for the weak topology.   □

2.3   Remark.   It is not difficult to see that the  a-algebra generated by

the N \T) includes the uniform Baire sets (= the zj-algebra generated by the

uniform compact sets);   and we have just seen that it is a subalgebra of £.

Questions.   Is it a proper subalgebra?   Are the uniform Baire sets a proper

subalgebra?

Finally, the uniform topology on T  should not be confused with the

topology induced by the uniform operator topology.   The uniform operator

topology merely induces the discrete topology on T.

3.   Transformations as measures on shift space.   Let 9 ^ be the set

of all countable measurable ordered partitions   P = (P1, P2,- • • )  of C.   Al-

so let 9,   be the set of partitions with k elements.   Then we have injec-

tions ?, — ?2 -.-. 9k --•2>09,  by sending (P1, P2,---, Pk)

in 9k to (P1, ■■-, Pk,0) in 9k+1  orto (P1, • • • , Pk, 0, ■ ■ ■ ) in P x. Here

0 is the empty set.   The set 9 x is given the metric d{P, Q) = %2. \{Pl A Q1) =

\{\J. P! A Q1).   Each 9k is a closed subset of 9 x, and 9 = \Jk<    $k is a dense

Fa.  Jx is a Polish space.   Finally:   j ^ can be regarded as a subset of U  , where

(f is the measure algebra of (C, \) and N is the positive integers.   The

product topology thereby induced on  9m is identical with its original to-

pology. The Borel sets of 9m will be called Sß.

Now let  M be the one point compactification of  N.   Let A  be the set

of all two-sided infinite sequences with values in  M.   With the product to-

pology, A is a compact metric space.   The subset fi = {co: oj(t?.) < oo for all

n\ is a G g in A.   The shift is continuous on A,  and sends fi to itself.

Another way of viewing invertible measure-preserving transformations is as

Borel probability measures on A  which give measure   1   to fi  and are in-

variant under the shift.

Let Ak  be all sequences («_m n_k   l, ■ ■ • , nk) of elements of M.

Let pk  be the restriction map from A  to A,,   and let a,   be the restriction

map from Afe + J   to Afe.   Then for any Borel probability measure p. on A  we

have a measure pk = pop7     on A^   for each k,  and p., = /¿¿ + 1 oo7 *.   Con-

versely, to each sequence of probability measures p.   on A,   such that p, =

Pk + l0(Tk +1'  tnere exists a unique p on A  such that pvp^1 = pk  for all  k.

(This is  just  the Kolmogorov extension theorem in a simple case.)   Further,

p will give measure  1  to fi if and only if each pk gives measure 1 to each fi,.



386 JACOB FELDMAN

Let 511(A)  be the Borel probability measures on A.   Since fi  is a Borel

subset of A,  we may regard JlKfi) as a subset of 311(A).   First consider a

topology on %.{A) regarded as a subset of the dual of C(A):   the weak* topol-

ogy.   This is a Polish topology (see, for example, [12]).   Dlî(fi) is a Borel set,

in fact a G j ,  since it is

OO OO OO < \

n nnL um-, fir , /-.u/ow/iu > i --!
y=_oo fc.i / = !   / J        L-LS k \

and cú l—> lr    . ,l(cu(/)) is continuous for each  /, I.   The weak* Borel sets of

DH(fi)  will be called 3R.

The weak* topology on probability measures is also called the "vague"

topology; and for a function on probability measures to be Borel measurable

for this topology may be interpreted, in the present context, as its being com-

putable as a limit of the values of the measure on sets of fi  involving only

finitely many coordinates.

Now a map <£> will be introduced from T x 9 x to i)II(fi),  as follows:

$(T, P) is the unique Borel probability measure p on fi   such that

poP-Tl\{n_k,- • ■ , n¿>\=\{C\k = _kV Pni).   $(T, P) will sometimes be called

pT p.   The T-invariance of À implies shift-invariance of pT p.

3.1   Proposition.   $:   T x 9^ —» ')ll(fi)  is continuous, for the weak* to-

pology on Jll(fi) and the weak topology on T.

Proof.   First it will be shown that for each {n   ,,•••, n.) in fi,   the

numerical function (T, P) h* X{C\k,_kTiPni) is continuous.   Let {S, Q) be

another pair in TxiP^.   Then, setting A{ = C\k =.TjPn,  and B.=

P)L_¿S;Q"/,   we have

k-1

\X{A_k) - \{Bk)\  <   £    |A(B._, n A.) - A(ß. n A.+ 1)|
« = -*

fe-1

<   £    A((B.      n A.) A(B. n A...»
7= -k

since   |à(C) - X(D) I < à(C A D) in general.   Now set Ci=Bi_l   n   A,+ j.

Then B.   , O A . = C. O T¿P"z-,  while B. nA., = C. O S'ß"';   Thus the
7— 1 7 I 7 7+17 ^

last term in the sequence of estimates is
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fe-1 n k-l

£   A((c. n r>":) A (c. n S*!}*)) < £   a(t¿p"¿ A s¿o*ó,
¿= -TÍ 7= -k

since A((C n A) A (C O ß)) < A(A A B) in general.   Now:

Atr'p"1' A Sfp"'') + X{Sip"i A 5¿2n¿) = A(r>"¿ A 5¿p"¿) + A(p"¿ A 0;"¿).

Fix  P.   The first term will be small if  T is weakly close to  S,  while the

second will be small if Q is close to  P in 9 (x.

Now:   let / be any continuous real-valued function on A.,   and bounded

by 1.   Then:

iAf°Pkd^T.P =  /A    fdrlT.P°Pki = Ja    fdtLT.P°Pkl-
k k

Fix /  so large that, setting 3 = !(- nk, • • • , 72^):   all 72   < /!,  one has

pT p°p"^  (3) > 1 — i.   Choose {S, Q)  sufficiently close to (T, P) that

ps n°Pk     differs from pT P°P^     on each of the  l2k + 1 elements of H  by

less than   c/l2k+l.  Then also ps eop~HH) > 1 - €.   Also, let g = 1-/.

Then g is still continuous, and

//j „-1      Ç1 j -1

< JsdpT popll - fgdps fiop['

+ MT)Pop-HAfe/H) + ^Qop-HAfe/3

< H\sin)\\PptT°P~1in)-pSQop-1{n)\ + 2c<3e.    O
77 eH

A finer topology is given by considering "weak convergence of mea-

sures" in Jlî(fi).   This is the topology defined by requiring continuity of the

functions p h-» /_/ dp for all bounded and continuous functions on fi.   Since

such functions do not necessarily extend to continuous functions on A, this

topology could be finer; in fact, it is, and makes DlKfi)  into a nonseparable

completely metrizable space.   The Borel structure for this topology is thus

very fine; call it ft.   However:

3.2 Proposition. The a-algebra generated by the functionals p (-► J f dp, f

bounded and continuous on fi,  is precisely  3JÎ.

Proof.   First, let / be bounded and continuous on fi.   Let / (&>) = f{co ),

where 0Jn{j) is coif) if /< n,  and coij) = 1  if ;>72.   Then con —• co in fi,



388 JACOB FELDMAN

so  fi-co) —> fico), tot each o> £ fi-   Now:

fQfdp - ¡afdpQ =   lim   ffn dp - fQ fn dpQ.
77— 0»

Thus,   \ff dp- ff dpQ | < a <=» for each />0, 3tt2 such that   \f fn dp ■

j  f dp0 I < a + l/l fot all  m > n.   So,

ÍOO OO OS Í
-fn. u, n r /.'*-/.'+

/ = !    771 =1    77 = 771     f.

1
<  ÍZ +  y

which is a weak* F    g,  and therefore in ™.

Conversely:    consider only those functions on fi  which extend continu-

ously to the compact set A.   The functions p h* /. / dp separate )1UA),  so

polynomials in them are uniformly dense in all weak* continuous functions

on MA) (by Stone-Weierstrass).   Thus, the cr-algebra generated by such

functions p (-. J   / dp is all of the weak* Borel sets in JlKA),  since JTKA)

is a Polish space.   Consequently, looking only at p £ %{Q),  we see that

/. f dp = fQf dp and the functions p h-> J f dp generate all of SOI.   D

3.3   Remark.   The distinction between the two topologies arises only

because we are permitting an infinite "alphabet".   Let M  (fi)  be those mea-

sures which are supported on the closed subset jo,:   a>{j) < n tot all  j\ of

A.   Then the weak and weak* topologies have the same restriction to m (fi),

which is itself a weak* closed subset of i/lUfi).   See [l2] for details.

4.   Borel structures of various subsets.   Define the entropy h on 9

by h{P) = - 2.¿ _jA(P.) log A(F); then h is a nonnegative, upper semicontin-

uous function on 9(x,  finite on 9  and continuous on each 9,.

The map T t-» T"   P is a continuous map from the weak topology on

transformations to  J M.   Finally, the map:   î^ x 9^ ~* 9M given by send-

ing (P, Q) to  P V Q is jointly continuous.   Thus the map  Th

h{\J™ZldT-'P) is  T-measurable.

Then so is  limn_Jl/72)MV"r¿T-;P) = W(P, T), the entropy of P with

respect to T.   Now choose a fixed increasing sequence P.   of finite parti-

tions such that   U^xi^fc  generates the measurable sets of C.   Then the

Kolmogorov-Sinai theorem [l] says the entropy of T,  call it H{T), may be

obtained as lim^^fKP^, T).   Thus:

4.1   Proposition.   Entropy is %-measurable on T.

Now consider the set of ergodic transformations.   These may be des-

cribed in terms of the corresponding unitary operators:   T is erogodic if and

only if the   only eigenfunctions of C/_ whose eigenvalue is 1  are the con-
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stant functions.   Alternately, in terms of the mean ergodic theorem,  T is

ergodic if and only if lim ^^(l/wX/ + • ••• + WL) = E,  where  E  is the one-

dimensional projection on the space of constant functions, and the limit is

in the strong topology.   But  U H. il/n){l + • • • + Un)  is a strongly continuous

function from isometries to isometries, so the limit is a Borel function, and

consequently:

4.2 Proposition.    The set of ergodic transformations is in £.

4.3 Proposition.   The set of Kolmogorov transformations is in  £.

Proof.   Recall that  £ is standard.   Then one can use the indirect method

of showing that the Kolmogorov transformations form both an analytic set

and a coanalytic set, so that by [6] they form a set in £.

Consider the following condition on pairs (T, P):

(a)   For each integer m > 0 there is an integer N such that for all n >

N and all k>0,   \Jntm., T~{P is (l/mXindependent of   \Jk-,TiP.
V   i —777. Tl A V   1  — i

Recall the definition of e-independence:   Q is said to be e-independent

of R it the total measure of those sets R. for which \{R.) / 0 and

2. \\{Q. O R .)/X{R ) - X{Qt) | > e is less than f.   Thus, \{Q, R):   Q is e-inde-

pendent of R\ is a Borel subset of 9^ x 90O,  and since both the maps  T H>

y"=z+iT~ip and T •■* vt=iT¿p are Borei maPs>k foii°ws that the pairs

(T, P) in T x í3^ which satisfy (a) form a set in £ x 5ß.

Now:   one characterization of the class  A of Kolmogorov transformations

is as ÍT:   VP £ 9, (T, P) satisfies (a)!.   Thus, A is an analytic set.

Another characterization is as i T:   3 generator P £ 9 such that (T, P)

satisfies (a) }.   Thus, if it can be shown that i(T, P):   P is a generator for

T¡ is in  £ x 5ß,  it will follow that A  is a coanalytic set, and the proof will

be complete.   This is done in the next proposition.   D

4.4 Proposition.   \{T,P):   T £ T,   P e 9M,  P  is a generator for T\  is

a G. (for the weak topology on T).

Proof.   Choose a fixed dense sequence A   , A   , • • •  of measurable sets

of C.   Then P is a generator for T if and only if for each ;' and k there

exists  / and a set of sequences  {n_¡, ■ • • , nj)   with each  n{ < I,  such that

the union over this set of sequences of the sets (\l.=_.T,Pni has symmetric

difference with A,   of measure  < 1/j.   o

4.5 Proposition.    The set   B  of Bernoulli transformations of finite en-

tropy is in £.

Sketch of proof.   An analogous line of reasoning can be used:   since  T
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is Bernoulli with finite entropy if and only if there exists an independent

finite generator,  B forms a coanalytic set.   On the other hand,   T is Ber-

noulli if and only if every finite generator is i^ery weakly Bernoulli in the

sense of [9].   (This is a result of Ornstein and Weiss [ll].)   This description

makes it possible to exhibit B as an analytic set, too.

5.   Remarks about invariants.    One view is that a reasonable invari-

ant for a set X of objects must be realizable as a real-valued Borel function

for some naturally arising Borel structure on  X.   This, of course, cannot be

a theorem; it is simply a requirement which gains plausibility from examples.

Another sort of invariant, however, is obtained where one uses one com-

plicated mathematical object to classify another.   For instance:   conjugacy

of T    and T    implies unitary equivalence of Vf.   and Uf      Thus, unitary

invariants for unitary operators may be used as conjugacy invariants for in-

vertible measurable transformations.   Unfortunately, the invariants under uni-

tary equivalence are given in terms of equivalence classes of measures under

mutual absolute continuity.   The results of [3] seem to imply that these can-

not be converted into nice Borel functions.

At any rate, and with whatever justification, I will insist that the invari-

ants be U-measurable on T;  note that this is weaker than saying that they

are  £-measurable on T.

By a complete set of conjugacy invariants will be meant a countable

family of conjugacy invariants which, between them, can distinguish between

any pair of nonconjugate transformations.   (Obviously, one wants countabili-

ty; else, why not use the indicator functions of the conjugacy classes?)

One more notion.   Consider the example of matrices under similarity.

The Jordan canonical form provides a complete set of invariants in terms of

some complex numbers and some integers.   These can be given in such a

way that for all possible values of the invariants there is a corresponding

class of matrices.   It is, however, conceivable that a set of mathematical

objects could have a complete set of invariants which are nice Borel func-

tions, but nevertheless, these invariants could not be given in such a way

that all possible values of the invariants corresponded to an actual class

of objects.   If the stronger property holds, let us call the set of invariants

free; otherwise, restricted.   For example, if T    and T    ate conjugate,

then  Uf    and Uf2  ate unitarily equivalent, so that the unitary invariants

for unitary operators may be used as a set (not complete, of course) of in-

variants for the invertible measure-preserving transformations.   Thus, the

spectrum oWj.) is a conjugacy-invariant for T.   This is possibly a quite
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reasonable sort of invariant, but it is far from known what closed subsets

of the unit circle can arise as a{[]A) for some  T.

The reader will immediately see that while the existence of a free set

of invariants for X need not imply existence of such a set for a subset   Y

C X,  existence of a complete set of invariants for X gives a complete set

for  Y.

5.1   Theorem.    There does not exist even a restricted complete set of

conjugacy-invariants for the measure-preserving transformations of the unit

interval with Lebesgue measure, or even for the Kolmogorov transformations

of a given fixed finite entropy.

The proof will be given in the next section.

6.   The Ornstein-Shields construction.   Here is a very brief description

of those aspects of the construction   in [lO] which will be relevant here.

For each function g  from the positive integers to ¡0. l!,  a transformation

T    is constructed, with each T    £ A,  and T    will be conjugate to  T  <   if

and only if g{n) = g'{n) fot all but finitely many integers  n.   All the  T

have the same entropy.   The map g |-» T    will be a Borel map from the ob-

vious Borel structure on the functions g to measurable transformations.

The transformations in [lO] were not placed on the unit interval, and the

purpose of these remarks is to put them there.

There were also constructed in [10] partitions  P  ,   and actually the

aforementioned results apply rather to the restriction of  T    to the invariant

cr-algebra generated by P    under T .   However, as is remarked there, a

very minor change in the construction can be made which will have the ef-

fect of making each  P     a generator of the full a-algebra of Lebesgue mea-

surable sets; and it is such a version of the construction which will be util-

ized here.

Let Fn be all functions from \l, ■ ■ ■ , n\ to Í0, li, and TM all func-

tions from the positive integers to Í0, l!.   For each g eT^,  let y  (g) =

gill» • • • > n\ £ Tn.   For each y e V  , denote by  ye,   where e = 0 or 1, the

element of ^n + 1  which agrees with y on \l, ■ ■ ■ , n\ and equals e on 72

+ 1.   For each n,  and each y eTn,  there will be an interval  C    = [O, c   ]

on the real line, which is divided into h{y) subintervals I7, ■ • ■ , ¡V       of
1 h iy )

equal length; they are ?zor necessarily labeled in ascending order.   D     will

denote ij Ú ■ ■ • U /J(y)_ r   A gadget (called G{n) in [lO], but actually

depending on y) is defined by

(1) the transformation S   :   D    — C     which sends 17 onto /7+1  by
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translation,   i = 1, • • ■ , h{y) - 1,  and which, for convenience, we extend to

all of  C       tot example by sending  l7fv>  by translation onto ¡J;

(2)   a certain three element partition  Q     of Dy,  which for convenience

we extend to all of Cy,  for example, by putting all of  I; ,ys  into  Qy.

The following properties hold, for any y and e = 0 or 1:

(a) DrfDDy,

(b) Sy(\Dy = Sy\Dy,

(c) Qy(\Dy=Qy\Dy.

Also, for any g,

(d) b(ynig)) I c,,

(e) c{yn{g)) is bounded above.

Since the Lebesgue measure A(Dy   .   .) f ,  by (a), and since  c{y (g)) =

A(r9yn(g)) + l/Myn(g)), it follows that ciy (g)) converges to some c{g),

while A(Dr„(g))îc(g).   Notice that [0, c{g)) = U„ Cyn{g) = JJn Dr„(g).

The whole apparatus is now transferred to  [0, l]  by scaling down:   let

S     be the map x H» c{y)x,  and  S    the map S H» c{g)x.   Then define  T   :

C - C by  Ty = s-1^,  and 2y by P y,  where  Py = s'Hop, i=\,

2, 3.   Since C(y„(g)) —» C{g) tot all g e rM,  it easily follows that Tyn^g)

converges in the uniform topology to a transformation  T  ,  which may alter-

nately be described as  s~  Sgsg,  where  S   :   [o, c{g)) —« [0, c(g))  is defined

by Sg\Dyn(g) = ^y„(g)lDrn(g)»  a definition which is consistent, by (b). Sim-

ilarly,    Pyn(g) converges in 9    to a 3-element partition of [0, l],  which

may alternately be described by  Pl = s~1{Ql),  where Q* = [J   Qly  (g) O

D-y    .
"n

Each g H» Tyn(g)    is a U-measurable function:   V^ —» T,  so the limit

g I-» T    is likewise.   Similarly,  g t-» P    is a ^-measurable function:  T    —•

6.1 Proposition.   T/je ser K = \T  :   g £ Tji is in £.

Proof. K is a countable-to-one image of the standard Borel space T^

in the standard Borel space T. The mapping function, g h* T is 12-mea-

surable, hence £-measurable.   So, by [6], the image is Borel.   D

Now for the proof of Theorem 5.1 of the previous section.   In fact, here

is a somewhat stronger result.

6.2 Theorem.   Let S be any U-measurable subset of K which contains

a complete set of representatives from K.    Let co., <¿7, ■ • •   be a sequence

cf> of real-valued U-measurable functions on K  each of which is constant on
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equivalence classes.    Then there exists an uncountable subset of inequiva-

lent elements of S  on which each of the cp ■  is constant.

Proof.   Without loss of generality, the ó .  may be combined into a single

real-valued U-measurable function cp.

Let 1 = [g:   T    e SI.   Let gQ, gj, ■ • •  be a listing of the members of

T,,, which are 0 from some point on, with gQ = 0.   Let Xß = 2, + gn,  so

10 = 2.   Let ipn{g + gn) = cß{Tg).   If g + g„ = h + gm,  then  Tg - Tft,  so

r>(T ) = qS(Ta); thus if/n = i/rm on ln <"> 2^.   Now, since g h> Tg is a (uni-

formly) Borel map, it follows that each ¿n is a Borel set   and each \pn is

a Borel function.   Furthermore,   U 2   = rM, by our assumptions on S,  so

the function if/  defined by setting \fj = \fr    on  2^  is a Borel function, and

is constant on equivalence classes in T^.

It will be shown that i/r  must give uncountable many equivalence clas-

ses the same value.    As a consequence, i/r.  must take the same value on un-

countably many inequivalent g,   so i/r  must do the same on the corresponding

T .
g

The argument that \fj must give the same value to uncountably many

equivalence classes is essentially due to Blackwell, and goes as follows:

Let p be coin-tossing measure on TM.   Then the restriction of p to the

equivalence-saturated Borel subsets of F^,  the "tail cr-field", takes on on-

ly the values of 0 and  1,  by the Borel-Cantelli lemma.   Since xfj  is both Bo-

rel measurable and constant on equivalence classes, poz/r-1  is a 0-1 valued

Borel measure on the reals.   Thus, its support is a single point xQ.   There-

fore, the countable set i/r~  {xQ) has p-measure one, which is impossible be-

cause p is a continuous measure.   G

Here is a corresponding theorem on shift space.   Let p   = $(T  , P  ).

Let Jv = {p  :   g £ r^i.   Then g (-» p    is a Borel map from the standard space

rM into the standard space ÜH(fi) with the weak* topology.   Since it is at

most countable-to-one, K is in SOI.   Incidentally:   each (x 6a has its support

on feu:   co{j) < 3 for all /J; but the weak* and weak topologies agree on the

set of all such probability measures, so that on K  the weak and weak* to-

pologies (and therefore Borel structures) agree, and thus the restrictions of SO!

and ft to this set of measures agree.

6.3   Theorem.   Let S C K and £ ft.   Assume that S contains a complete

set of representatives of K.    Let 0j, $2> ...  be any sequence of real-valued

^.-measurable functions on S which are constant on equivalence classes.

Then there is an uncountable set of mutually inequivalent elements of S,   072

which each 8.  is constant,
j
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Proof.    Essentially the same as before:   let X = [g:   p    eSi,   etc.   D
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