Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A characterization of hypoelliptic differential operators with variable coefficients
HTML articles powered by AMS MathViewer

by R. E. White PDF
Proc. Amer. Math. Soc. 46 (1974), 375-382 Request permission

Abstract:

Let $P$ be a linear differential operator with coefficients in ${C^\infty }(\Omega )$ where $\Omega \subset {{\mathbf {R}}^n}$. We characterize the hypoelliptic operators in terms of the $\ast$-hypoelliptic operators. $P$ is defined to be $\ast$-hypoelliptic on $\Omega$ if and only if $u \in {\mathcal {D}’_F}(\Omega )$ and $Pu \in {C^\infty }(\Omega )$ imply $u \in {C^\infty }(\Omega )$. We characterize the $\ast$-hypoelliptic operators via a priori estimates. We prove $P$ is hypoelliptic on $\Omega$ if and only if for $u \in \mathcal {D}’(\Omega )$ and $Pu \in {C^\infty }(\Omega ’)$ with $\Omega ’ \subset \Omega$, there exists for each ${x_0} \in \Omega ’$ a relatively compact open neighborhood ${\Omega _{{x_0}}} \subset \Omega ’$ of ${x_0}$ such that $P$ is $\ast$-hypoelliptic on ${\Omega _{{x_0}}}$.
References
  • V. S. Fediĭ, A certain criterion for hypoellipticity, Mat. Sb. (N.S.) 85 (127) (1971), 18–48 (Russian). MR 0287160
  • Lars Hörmander, On the theory of general partial differential operators, Acta Math. 94 (1955), 161–248. MR 76151, DOI 10.1007/BF02392492
  • Lars Hörmander, On interior regularity of the solutions of partial differential equations, Comm. Pure Appl. Math. 11 (1958), 197–218. MR 106330, DOI 10.1002/cpa.3160110205
  • L. Hörmander, Linear partial differential operators, Die Grundlehren der math. Wissenschaften, Band 116, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #4221.
  • Bernard Malgrange, Sur une classe d’opérateurs différentiels hypoelliptiques, Bull. Soc. Math. France 85 (1957), 283–306 (French). MR 106329
  • Joseph I. Nieto, Eine Charakterisierung der elliptischen Differentialoperatoren, Math. Ann. 141 (1960), 22–42 (1960) (German). MR 116138, DOI 10.1007/BF01367448
  • J. Peetre, Elliptic partial differential equations of higher order, University of Maryland, Lecture Series, no. 40, College Park, Md., 1962. L. Schwartz, Théorie des distribution. Tomes I, II, Actualités Sci. Indust., nos. 1091, 1122, Hermann, Paris, 1950, 1951. MR 12, 31; 833.
  • François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1967. MR 0225131
  • Hermann Weyl, The method of orthogonal projection in potential theory, Duke Math. J. 7 (1940), 411–444. MR 3331
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35H05
  • Retrieve articles in all journals with MSC: 35H05
Additional Information
  • © Copyright 1974 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 46 (1974), 375-382
  • MSC: Primary 35H05
  • DOI: https://doi.org/10.1090/S0002-9939-1974-0358059-0
  • MathSciNet review: 0358059