A FORCING PROOF OF THE KECHRIS-MOSCHOVAKIS CONSTRUCTIBILITY THEOREM

ANDREAS BLASS

ABSTRACT. We show, by forcing, that every subset of X_1 whose codes form a Σ_2^1 set of reals must be constructible.

In [1], Kechris and Moschovakis proved the following theorem by a gametheoretic argument and expressed doubt whether it could be proved by the forcing techniques of Solovay [3].

Theorem (Kechris-Moschovakis). Let A be a set of countable ordinals whose codes form a Σ_2^1 set of reals. Then A is constructible.

(For details of the coding of ordinals by reals, see [1].)

The purpose of this note is to prove this theorem by forcing.

Let A be as in the hypothesis of the theorem, and let P be a Σ_2^1 formula such that, whenever a real α codes an ordinal σ ,

(1)
$$\sigma \in A \longleftrightarrow P(\alpha).$$

We may suppose, without loss of generality, that the statement

(2)
$$\forall \alpha, \beta \ [(\alpha \text{ codes the same ordinal as } \beta) \land P(\beta) \rightarrow P(\alpha)]$$

is provable in ZFC, for we may, if necessary, replace the given $P(\alpha)$ with the new Σ_2^1 formula

$$\exists \beta \ [(\alpha \text{ codes the same ordinal as } \beta) \land P(\beta)].$$

For each countable ordinal σ , let C_{σ} be the set of one-to-one finite partial functions from ω to σ . We think of C_{σ} as a notion of forcing (see [2]), and we write \Vdash_{σ} for the associated (weak) forcing relation. The forcing language contains a name G_{σ} for the generic subset of C_{σ} and a name

Received by the editors July 20, 1973 and in revised form, November 28, 1973. AMS (MOS) subject classifications (1970). Primary 04A10, 04A15.

 γ_{σ} for the well-ordering of ω (or a finite subset of ω) of length σ induced by the bijection $\bigcup G_{\sigma}$ from ω (or a finite subset) onto σ . Thus,

It is easy to check that C_{σ} , G_{σ} and γ_{σ} are constructible functions of σ .

Consider a fixed countable ordinal σ and a code α for σ . Let C^* be a notion of forcing with respect to which every condition (weakly) forces:

(4) Every element of \check{C}_{σ} belongs to some generic (over \check{V}) subset of \check{C}_{σ} . For example, C_{σ} itself is such a notion of forcing, but it is perhaps easier to verify (4) if we take C^* such that the power of the continuum is collapsed to ω . With respect to any such C^* , every condition (weakly) forces the content of the following paragraph.

For every generic (over \check{V}) subset G of \check{C}_{σ} , inducing a well-ordering γ_G of $\check{\omega}$ (or a finite subset) of length $\check{\sigma}$, we have the following chain of equivalences:

$$\begin{split} \check{\sigma} \in \check{A} &\longleftrightarrow \check{V} \models P(\check{\alpha}) & \text{by (1),} \\ &\longleftrightarrow P(\check{\alpha}) & \text{by Shoenfield's absoluteness theorem,} \\ &\longleftrightarrow P(\gamma_G) & \text{by (2) as both } \check{\alpha} \text{ and } \gamma_G \text{ code } \check{\sigma}, \\ &\longleftrightarrow L[G] \models P(\gamma_G) & \text{by Shoenfield again.} \end{split}$$

As G is generic over L and $\check{\gamma}_{\sigma}$ denotes γ_{G} in the usual interpretation of the forcing language in L[G], the last formula in our chain of equivalences is implied by $L \models (\varnothing \Vdash_{\check{\sigma}} P(\check{\gamma}_{\sigma}))$. But conversely, if in L the empty condition does not force $P(\check{\gamma}_{\sigma})$, then there is a $p \in \check{C}_{\sigma}$ forcing (in L) $\neg P(\check{\gamma}_{\sigma})$. By (4), this p is in some generic G, so, by the chain of equivalences, $\check{\sigma} \notin \check{A}$. We have therefore

(5)
$$\check{\sigma} \in \check{A} \leftrightarrow L \models (\emptyset \Vdash_{\check{\sigma}} P(\check{\gamma}_{\sigma})).$$

In the formula (5), which is forced with respect to C^* , all quantifiers are restricted to L. Therefore, we have (in the real world)

(6)
$$\sigma \in A \leftrightarrow L \models (\emptyset \Vdash_{\sigma} P(\gamma_{\sigma})),$$

from which it immediately follows (since σ was arbitrary) that $A \in L$.

REFERENCES

- 1. A. S. Kechris and Y. N. Moschovakis, Two theorems about projective sets, Israel J. Math. 12 (1972), 391-399.
- 2. J. R. Shoenfield, *Unramified forcing*, Proc. Sympos. Pure Math., vol. 13, Part I, Amer. Math. Soc., Providence, R. I., 1971, pp. 357-381. MR 43 #6079.
- 3. R. M. Solovay, Measurable cardinals and the axiom of determinateness, Lecture notes for Summer Institute on axiomatic set theory, UCLA (1967).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48104