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EXISTENCE THEOREMS FOR HIGHER ORDER

BOUNDARY VALUE PROBLEMS

KEITH SCHRADER AND S. UMAMAHESWARAM

ABSTRACT.    In this paper the differential equation y(«) = f(x, y)

and associated boundary conditions y(T>(xj) - y;r for i - 1, 2, • • • , k

and r = 0, 1, • • • , X(i) - 1  where \( 1) + A(2) + • • • + \(k) = n  are con-

sidered.  Sufficient conditions on / are given to insure the existence

of a solution to this  k point boundary value problem.  In the special

cases when  k - 2 or k - 3   sufficient conditions on / are given to in-

sure both uniqueness and existence of solutions for certain of the boun-

dary value problems.

1.  Introduction.   For n > 2 we are interested in the wth order nonlinear

ordinary differential equation

(LI) y<"> = /(*,y)

where f: (a, b) x R —> R is continuous.  The boundary conditions

(1.2) yi'\x.)-yir,       r=0, 1, •••, A(z)-1,  z'= 1, ..., k,

where S . _ ,A(z) = n, k > 2  and a < x. < x   < • • • < x, < b will also be con-

sidered.

Our purpose in this paper is to obtain sufficient conditions for the ex-

istence of a solution to the problem (1.1) and (1.2) on [x., xA.  The results

of this kind which can be found in the literature often fall into one of two

cases.  In one case the sufficiency conditions require the existence of cer-

tain auxiliary functions which satisfy some inequality relationships with

respect to the function /, the boundary conditions (1.2) and each other.

Thus the problem of solving the differential equation (1.1) with boundary

conditions (1.2) for a single function y  is replaced by the problem of

solving a system of differential and algebraic inequalities for several func-

tions.   Results of this kind may be found in [2, Theorem 7.3], [3, Theorems
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9 and 10], [5, Theorem 3.1] and [6, Corollary 3.1] among other places.

The other type of results commonly found in the literature either assume

that / is uniformly bounded on (a, b) x R [5, Lemma 2.3] or assume condi-

tions that imply  |/|  is bounded by a function of the form A(x)|y| + B(x) (fot

example by assuming / satisfies a global Lipschitz condition with respect

to y  on (a, b) x R)  and that the interval  [x., x,]  is sufficiently small.

These results are more explicit than the first type of results described above

because it is relatively easy, given /, to ascertain whether the hypotheses

are satisfied.   They do, however, severely restrict the growth of / in the y

variable in order to assure the existence of a solution to (1.1) and (1.2).

When  72 = 2, considerably better results are known; for example if / is con-

tinuous and nondecreasing in y for each fixed x then all boundary value

problems of the form (1.1), (1.2) are solvable [2, Corollary 4.20].  In fact for

72 = 2 an even better result is known; namely, if / is continuous and there

is an M > 0  such that f(x, y) > -M  for x, < x < x.   and y > 0   and such that

f(x, y) < M  fot x. < x < x.  and y < 0  then (1.1), (1.2) has a solution [6,

Corollary 3.2].

Our main existence theorems represent an attempt to generalize the re-

sult for n = 2 just described to the case for arbitrary  n  and are contained

in §2. In §3 we give existence and uniqueness theorems for some of the

boundary value problems (1.1) and (1.2) in the special case when  k = 2 or

¿=3.

2. Multipoint problems.  To simplify notation we make the following defi-

nition.

Definition 2.1.   The symbol  s(j) is defined by the equation  s(j) =

£*,A(p)  where the À(p)   are as in equation (1.2).

We now state one of our main existence theorems.

Theorem 2.2. Assume f in (1.1) z's continuous on (a, b) x R and that

f(x, y) < M for a < x < b and y £ R.  Let a < x. < x, < • • • < x    < b and À(z)

for i = 1, • • • , k  be fixed with s(k) = n and assume f(x, y) > K for x in

(x., x.   j)  and y  such that (-l)n+s(l)y <0 .   Then (1.1), (1.2)  has a solu-

tion for all choices of y .   £ R.

Proof.   Without loss of generality we may assume that M > 0   and K < 0.

Let p(x)  be the unique polynomial of degree 72 - 1   satisfying p    (x.) = y .

for r = 0, 1, • • •, X(i) — 1   and  z = 1, • • • , k.  Let v(x)  be the solution of the

differential equation  i/"'(x) = M   satisfying i/r'(x.) = 0  for r = 0, 1, •••,

A(z') - 1   and i = 1, • • • , k.  Clearly,
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v(x) = M(x - Xj)*«1* . . . (x - xk)X(-k'/nl

and for x. < x < x.+ 1, Sgn t^x) = (- 1)A<¿ + 1>+- ' ' +*<*> « (_l)»+*(»'>   i.e.,

(_l)"+s(Ov(x)>0-!

Choose <£(x) = p(*) + ia»;   consequently  (- 1)"+S(ï)[0(x) - p(x)]

= (_l)"+5(¿)t<x) > 0  on x. < x < x      .   Also cp{n\x) = M > /(x, y)  for all  x,

y  with  xx < x < x,   and y £ R.  We will now show that we can choose a func-

tion  if/ £ Cn[xx, xk]  such that Sgn [<£(*) - t/>(x)] » (- l)" + s<¿>  on  x   < x <

x        for z = 1, • • • , k - 1  and such that i/r     (x) < f(x, y)  fot all (x, y) e W

where
fe-I

W. UK*,?): x.<x <x     , (-i)n^^VW

(2.1) '-I

In fact, we shall obtain a function t/f £ C"[x,, x,]   such that Sgn[çX^) - <pX*)]

= (-l)" + s(¿)  on  x. < x < x.  j   and  0(n)(x) < /(x, y)  for all (x, y)  with  x. <

x<x. + 1   and (-l)n+s(i)y <(-l)n+sU)(p(x)  for z = 1, • • • , k - 1.

By hypotheses f(x, y) > K for x    < x < x    j   and (- l)" + s(i)y < 0.  Let

C. = MaxK-iy1**"^): *¿ <* <*l+j !

and C.  = MaxJO, C. S.  Then there exists a constant K. < K  such that /(x, y)

> K. for x. <x<x.   .   and (-l)"+s(l)y < C'.  Let K. = Min{K.: Í- 1, 2,
—        7 !   — —       Z + l v ^   —        7 0 I

••• , A-11.

Let « be the solution of the differential equation zrn)(x) = rC satis-

fying the boundary conditions z/r'(x.) = 0, r = 0, 1, • • • , A(z) - 1, i = 1, 2,

• • • , k.  Then

22(x)=(K0(x-x1)^1)-.-(x-xfe)x(^)/^!

and for x. < x < x.    ,
I 7 + 1'

Sgn u(x). (_l)M*'+D+---+x(*)+l = ^_i)a+i(i)+l

i.e., (-l)"+-s(l)zz(x) <0  forx.<x<x.   ,.

Let ip(x) = p(x) + u(x), so that we have SgnL^(x) - p(x)] = (- i)"+s(¿) + 1

and (-l)n + sU)[ipix) - p(x$ < 0   for x. < x < x.+v  Thus (-l)" + s(l)t/Xx) <

(-l)"+s(0p(x) <(-l)" + s(l)<7Xx)  for x. <x<x. + 1.  Now ij/(n)(x) = uM(x) =

Ko < Ki < fix> y) for *; < * < xi i and (- Dn+S(l)y < c\.

The functions <f> and i/í together with the differential equation (1.1)

and boundary conditions (1.2) satisfy the hypotheses of Theorem 3.1 of [5]

so it follows from this theorem that (1.1), (1.2) has a solution y   such that

(x, y(x)) £ W where W is as defined in equation (2.1).
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Corollary 2.3.  Assume / in (1.1) is continuous on (a, b) x R and that

fix, y) < M for a < x < b and y £ R.  Let a < xx < x2 < — < xfe < b and

A(z') for i = 1, 2, • • • , k  be fixed with  s(k) = 72.  Assume f(x, y.) > /(x, y2)

for x.<x <x.   x  and (-l)n + s(i)(yx-y2) <0.  Then (1.1), (1.2)  bas a solu-

tion for all choices of y .   £ R.

Proof.  If x. < x < x.   x   and (- l)"+s(î)y < 0  then /(x, y) > /(x, 0)   so

let K = Min{/(x, 0): Xj < x < xfe}.

Theorem 2.4.  Assume f in (1.1) z's continuous on (a, b) x R  and that

fix, y) > M for a < x < b and y £ R.  Let a < x .< x2< ■ ■ • < x^< b and

A(z')  for i = 1, 2, • • • , k  be fixed with  s(k) = 72 and assume f(x, y) < K for

x in (x., x.   j)   «W y  such that (-ï)"+s(i)y > 0.   Then (1.1), (1.2)  has a

solution for all choices of y .   £ R.

Proof.  The proof of this result is similar to the proof of Theorem 2.2

so it is omitted.

Corollary 2.5.  Assume j in (1.1) is continuous on (a, b) x R and that

f(x, y) > M for a < x < b and y £ R.  Let a < x, < x2 < • • • < x,  < b and

A(z)  for i = 1, 2, ■ ■ • , k  be fixed with  s(k) = n.  Assume f(x, y x) < f(x, y2)

for x. <x <x.   j  and (-l)n+sU)(yx-y2)>0.  Then (1.1), (1.2) has a solu-

tion for all choices of y .   £ R.

Proof.   Similar to the proof of Corollary 2.3.

3.  Two and three point problems.  In this section we consider equations

(1.1) and (1.2) when  k = 2 or k = 3.  We need the following lemma due to

Kolmogorov [4] in some of the proofs to follow so it is stated here.

Lemma 3.1.   Given M > 0, [c, d] C R, y £ C"[c, d]  an arbitrary function

with the property that \y(x)\ < M and |y     (x)| < M 072 [c, d]  then there exists

a constant K> 0 depending on M and d — c such that |y    (x)| < K on [c,

d]  for 1 < r < 72 - 1.

We begin by considering a two point problem with all but one boundary

condition specified at x..

Theorem 3.2.   Let f in equation (1.1) be continuous on (a, b) x R and

be nondecreasing in y for each fixed value of x, a < x < b.  Let k = 2, M. 1)

= 72-1  and A(2) = 1. Assume that solutions of IVP' s (initial value problems)

of (1.1) are unique.  Let x.   be fixed, a < x. < b, and S(x2) = \y2 .: y2 _   £

R, there exists y satisfying (1.1) and (1.2)1.  Then for each x2, a < xx <
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x2 < b, either 5(x.) =0   or S(x2) = R.  In case S(x2) = R, the solution satis-

fying (1.1), (1.2) is unique.

Proof,  (i)  We will first show that if for some y2 .   a solution satisfying

(1.1) and (1.2) exists, then it is unique.

Assume, if possible, u  and v are both solutions of (1.1) and (1.2)   and

that they are ditsinct.   Then since solutions of IVP's ate unique we must

have u(n-l)(xx)4 vin-l)(xx)    We assume.that u{n~ l)(xx) > v{n~ X\xx).  Let

b(x) = zz(x) - v(x)  and let xQ, Xj < xQ < x2, be the smallest value of  x bigger

than Xj  for which h(x) = 0.

Now h  satisfies h(r)(xx) = 0, r = 0, 1, • ■ ■ , n - 2, h(xQ) = 0   and hM(x)

> 0  for Xj < x < xQ. Using Taylor's theorem with remainder we can write

n-}hU\x,)                  .     h{n\x')(x-x,)n

h(x) = b(xx)+  £   _L. (x-xxy +-ÜL-L_

7=1

where x, < x   < x < x    and x    depends on  x.  Thus,

hiH~l\x.) ,     h{n)(x')

h{X«U       (72-D!       {X°-X1] +~ïï^(X0-^r

and hence

h(x0)
h{n-l\x.)
_    1.   7„        „ \n— 1

which is a contradiction.  We conclude that u  and  v must be identical.

(ii)  We will now show that for each  x.,, a < xx < x2 < b, S(x2) = 0 or

S(x2) = R.

It suffices to show that S(x2) is both open and closed.  To see that

S(x?)  is closed, we let  \y . \ be a sequence of solutions of (1.1) on [xj, x2]

with yir\xx) = y,r=0, 1, ■••,72-2 and y .(x2) —» a  as / —» +«>. We will

treat the case  where  iy.(x7)i is monotone and strictly increasing, the other

case being similar.   By part (i) of the proof, we have y .   j(x) > y .(x)  for

x, < x < x     Let h .(x) = y (x) - y,(x)  for j > 2.  Then hV'(xx) = 0  for r = 0,

1, ••• , 72- 2  and h .(x) > 0  for Xj < x < x2   and &*.""" l)(Xj) > 0.   Also /)^n)(x)

> 0 for x. < x < x2.  Since

*}■ -• >(x) = hf -1)(X()+ f*  hf \t)dt,

we also have h^n-l\x) > 0 for *j < x < Xj. Then ü»(?~2)(x) = h{*~2\x¿ +
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¡*x hi"' J)(r) dt implies h(n~2)(x) > 0  for x^ < x < xr  Continuing in this

way, we see that ¿>(,)(x) > 0  fot r = 0, 1, ■ • • , n, xx < x < x2  and / = 2, 3,

• • • .   From this we see that h .(x) < h (x )  for Xj < x < x2   and hence  \h .(x)|

is uniformly bounded for x} < x < x2   and /' > 2.  Since  !y . I  satisfies (1.1)

we have  \y ." (x)\  uniformly bounded for x, < x < x2  and / > 2.

It now follows from Lemma 3.1 and [l, Theorem 3.2, p. 14] that there is

a solution y  of (1.1) on [xj, x2]  with y^r'(xx) - yXr, r = 0, 1, • • ■ , n - 2,

and y(x2) = a. Hence a € 5(x2)  so S(x ) is closed.

To see that 5(x.)  is open, we assume that S(x2)  is not empty.   Then,

if ß £ S(x )   and y  is a solution of (1.1) with y    (Xj) = yXr, r = 0, 1, • • • ,

72-2, and y(*2) = ß, it follows that there exists an e > 0   such that all solu-

tions z of (1.1) which satisfy zT(xx) - y.. r = 0, 1, • • • , 72 - 2, and which

satisfy  \y (xx) - z^"~    (x.)| < e have a maximal interval of existence

(co-, 6J+) which contains [x., x,].  Let A = {y: \y (x.) - y\ < el and de-

fine T: A —> R by T(y) = z(x2)  where z is the solution of (1.1) on [x,, xj

which satisfies z^T\x,) = y.  , r = 0, 1, • • • , n — 2, and z(n~   '(x.) = y.  By

part (i) of the proof, T is one-to-one.   T is continuous, since solutions of

IVP's ate unique.  It follows that  T is a homeomorphism and that T(A)  is

open.  From this it follows that 5(x2)  is open.

Now we consider a three point problem with one boundary condition

specified at each of the two endpoints and tz — 2 boundary conditions speci-

fied at the middle point.

Theorem 3.3.  Lei /  in equation (1.1) be continuous on (a, b) x R and

let a < x. < x2 < x, < b with x    fixed.  In equation (1.2) assume k = 3, A(l)

= A(3) = 1 and A(2) = 72—2. Assume f(x, y.) > f(x, y ) for x2 < x < b and

y.  > y2   and assume that   f(x, yx) > f(x, y2)   ¡or  a < x < x2   and

(—1)"+ (y, - y2) < 0.  Assume that solutions of IVP's are unique and define

S(xx, x.) for ß < Xj < x2 < x, < e by S(x., xj = i(y, Q,y, .):  there exists

y satisfying (1.1), (1.2)1.  Then for each pair (x., x,)  and for each fixed

iy \ o» y'* c\)  there is at most one solution satisfying (1.1), (1.2).   If solutions

of IVP's extend to (a, b)  then for each pair (x., x,), S(x., x,) = R x R.

Proof,  (i)  First we show that if for some pair (y. .,)/, .)   a solution

satisfying (1.1), (1.2) exists, then it is unique.

Assume, if possible, u  and v are both solutions of (1.1), (1.2), and that

they are distinct.  By the uniqueness claimed in Theorem 3.2 we cannot have

zz(n-2)(x2) = i/"-2)(x2).  Thus we may assume that zz("_2)(x2) > t;("_2)(x2).

If zr"-  '(x2) > t/"~  '(xj then an argument similar to that in part (i) of
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Theorem 3.2 yields a contradiction. If zr"~ '(xJ < i/"~ (x2), let h(x) =

(-l)*(zz(x) - v(x)) and let x , x} < x < x be the largest value of x less

than x,  for which h(x) = 0.

Now h  satisfies ¿>(r)(x2) = 0, r = 0, 1, • • • , 72 - 3, Sgn h(n~ 2)(x2) =

(- 1)", Sgn h{n~ U(x2) = (-1)"+1, h(x0) = 0, h(x) > 0  for x0 < x < x2, and

(-l)"Sgn /rn)(x) >0   for xQ < x < x2.  Using Taylor's theorem with remainder

we can write

"-1 h^Xpe.) .    b^Xx'Kx-xJ"
h(x) = h(x2)+ £   —7r2-(x-x2y +

7=1

2' i„    „ \j ,     ._':_'_v___   2'

where x» < x < x   < x2  and x    depends on x.  Thus,

¿>("-2>(xJ

ÍÜ-    ..Y«-i ■*("Vx«,-«,r
(72-1)!     (X0-V + rü

and hence

Ä(n-2)(xJ
"(*°^   0,-2)1     K--2)"-2>0

which is a contradiction.   We conclude that zz  and v must be identical.

(ii)  We will now show that for each pair (x., x,), a < Xj < x2 < x, < b,

S(xx, x ) = fl x R.

Since solutions of IVP's extend to (a, b)  the solution of (1.1) with

initial conditions y(r'(x2) = y2   for r = 0, 1, • • • , 72 - 3, y (x2) = 0,

y (x2) = 0  exists on [x., x2]   so 5(x., x,) ^ 0.  Thus it suffices to show

that S(x., x,)  is both open and closed.

To see that S(x., x,)  is closed we let iy . 1 be a sequence of solutions

of (1.1) on [xj, x?]  with y(yr)(x2) = y2r, r =. 0, 1, • • • , 72 - 3, and y .(Xj) —»

a, y.(x,) —» ß  as j—>+00.  Let h .(x) = y .(x) - y ,(x).  We may now pick a

subsequence of {/>. 1, again denoted by  {A.}, such that either  A.  -    (x.) >

0 for each / or else h\"~   '(x.) <0  for each / and such that either

A("_1)(x2) >0   for each./ or else h(n~l)(x2) <0   for each 7.  We will treat

in detail only the case when h[n~2\x2) > 0  and h.~l\x2) > 0    for each

; and the case when h.~'(x2) > 0   and h.~    (x ) < 0  for each / since

the other two cases are somewhat similar.
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If h(."~2)(x2) >0   and h(n~ l)(x2) >0  for each  /  then an argument simi-

lar to that in part (i) of the proof of Theorem 3.2  shows that h .(x) > 0   for

*2-X-*y   Als°. h(r)(x2) = 0   for r = 0, 1, •• -, 72 - 3  and hin)(x) > 0   for

x    < x < x .  Since

h^-i\x) = hin-i\xj + r hin\t)dt
1 i ¿        J x        1

we also have h{n~ l)(x) > 0   for x, < x < x,.   Then  h(n~ 2)(x) = ¿,("_ 2)(x,) +
7 — 2 -      —     3 7 7 2'

J x h.~   \t) dt implies h.~   '(x) > 0   for x2 < x < x,.  Continuing in this

way we see that hv'(x) > 0   for r = 0, 1, • • • , 72, x2 < x < x  , and / > 2.   From

this we see that h .(x) < h .(x,) fot x    < x < x,   and hence   \h .(x)|   is uni-

formly bounded for x    < x < x,   and 7 > 2.   Since  \y . 1  satisfies (1.1) we have

|y •   (x)|   uniformly bounded for x2 < x < x    and j > 2.  It now follows from

Lemma 3.1 and [1, Theorem 3.2, p. 14] that there is a solution y of (1.1) on

[xj, x ]   which satisfies ytr'(x2) = y2    for r = 0, 1, • • • , 72 - 3, y(Xj) = a

and y(x3) = ß.  Thus (a, /3) e S(xx, x?).

If /)<"_2)(x2) >0   and /7(y"_I)(x2) <0   for each  7  then let  9.(x) =

(-l)"h .(x).  An argument similar to that in part(i)  of this theorem shows

that q  (x) > 0   for Xj < x < x2-   Also  q(:T\x2) = 0   for r = 0, 1, • • • , 72 - 3,

(-1)" Sgn q\n~2)(x ) > 0, Sgn q\n-l)(x ) = (-1)" + 1   and (-l)"Sgn /"'(x) >

0   for x. < x < x2.  Since

t7("-i)W = 9(«-n(x )+f* ?(»\r)A
7 7 ^ J)£ '

we have Sgn q{n~ l)(x) = (- 1)" + 1   for x} < x < X-.  Then ?(;"-2)(x) =

qin-2)(xj+fx qin-l)(t)dt implies (- 1)" Sgn q\n~ 2)(x) > 0  for x, < x < x_.

Continuing in this way we see that (- l)rSgn q    (x) > 0   for r = 0, 1, • • • , 72,

x. < x < x2, and 7 > 2.   From this we see that q .(x) < q .(x.)  for x. < x < x2

and hence  |^.(x)|   is uniformly bounded for x. < x < x2   and 7 > 2.  Since  !y . 1

satisfies (1.1), \y .'(x)|   is uniformly bounded for x. < x < x.   and 7 > 2.

Now by Lemma 3.1 and [l, Theorem 3.2, p. 14] it follows that there is a sol-

ution y  of ( 1.1) on [x,, x,]   which satisfies y(r'(x2) = y2r tot r = 0, 1, — ,

72-3, y(x.) = a   and y(x ) = ß.  Thus (a, ß) £ S(xx, x )  so  S(xx, x )  is

closed.

To see that ^(x., x )  is open, let (a, ß) £ S(x., x )   and y  be a solu-

tion of (1.1) with y^r'(x2) = y2    for r = 0, 1,- •• ,72 - 3, y(xx) = O-  and y(x2)

= /S.  Define T: R x R —> R x R  by T(yj, y2) = (z(xx), z(x^)  where z is

the solution of (1.1) on [xx, x ]  which satisfies z(r)(x2) = y2r, r = 0, 1, • • • ,

72 - 3, z(""2)(x2) = yx   and z("_1)(x2) = y2.   By part (i) of the proof, T is
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one-to-one.   T is continuous, since solutions of IVP's ate unique.   By the

Brouwer invariance of domain theorem it follows that  T is a homeomorphism

and that 5(x,, x..) = T(R x R) is open.
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