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A COMPARISON THEOREM

FOR CERTAIN FUNCTIONAL DIFFERENTIAL EQUATIONS

ERNEST D. TRUE

ABSTRACT.  The oscillatory character of solutions to the functional

differential equation x      (t) + a(t)f(x(g(t))) = Q(t) is investigated, by com-

parison with the oscillatory character of solutions to x      (t) + s(t)f(x(t)) = Q

where  s(t) > ya(t), 0 < y < 1.  Here, Q(t) represents a bounded, oscillatory

forcing function, and  g(t) tends to» as   t -» °o  or  g(i) > t — c for large  t

but is otherwise arbitrary.

Consider the functional differential equation

(1) x(n)it) + ait)fix(git))) = Qit),

whose solutions may be compared with those of the differential equation

(2) x(n\t) + sit)fixit)) = 0,

where  sit) > yait) fot all sufficiently large  t, 0 < y < 1.

The questions of existence and uniqueness of solutions to initial value

problems with functional arguments have been considered recently in [4], [5]

and [6].  The oscillatory behaviour of solutions to functional differential equa-

tions has been examined by Waltman [8]  for second order equations of the

form xit) + ait)fixit), xigit))) = 0. Some generalizations of these results can

be found in [l].

Recently, Henry [2] has submitted some numerical techniques for approx-

imating solutions to functional differential equations.  The choice of algorithm

employed in approximating such solutions is often determined by prior know-

ledge of the behaviour of these solutions. The purpose of this work is to

determine the oscillatory behaviour of solutions to (1), by comparing the solu-

tions of (1) to the solutions of the well-known equation (2), whose solutions

have been examined considerably in the literature;  see for example [7].
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Let  F be the family of solutions of (1) which are indefinitely continu-

able to the right; i.e., if x(t) £ F, then there exists  l    > 0  such that x(t)

exists on [i„, °o).  A solution x(t) £ F is oscillatory if x(t)  has arbitrarily

large zeros, and x(t) 4 0 on any ray [t,, <*>) for which t. > r_. Also x(t) e F

is bounded if there exists  M > 0  such that  |x(i)| < M  for all large   t.

The following assumptions will be made for equation (1), the first of

which is due to A. G. Kartsatos [3].

(i)  Qit) is continuous on  / = [tQ, °°), tQ > 0, and there exists a function

Rit) £ Cn[tQ, =0) for which R(n)it) = Qit) on /. Moreover, RÍíJ - Aj, R(# - -A.,,

where —A- < Rit) < À,   on 7, and [i   !, {/   I  are any two sequences for which

Lim     — f™ Lim ___ t   = o».
72—.00      72 72—»CO      72

(ii) /(x)  is continuous on ( —°°» °°)> nondecreasing in x and xfix) > 0

for % 4 0.

(iii) g(i)  is continuous on  / and tends to °o  as  t —> °°.

It is worth noting that  Qit) = 0  on  / is acceptable in (i), and git) is not

necessarily a delay or advanced argument in (iii).  For example, it would be

permissible to have  git) = t + sin(z).

Theorem 1.  Assume (i)—(iii) hold, and in addition, suppose

(iv) ait) > 0  and continuous on I and there exists a real number y,

0 < y < 1, such that for any continuous sit) > yait), t > r., the equation

(3) v(n)it) + sit)fivit)) = 0

has all its bounded solutions oscillatory.

Let xit) £ F  be bounded.   Then if n is even, xit)  is oscillatory, while

if 72  is odd, x(t)   is oscillatory or Lim inf \x(t)\ = 0.

Proof.  Suppose all bounded solutions to (3) are oscillatory, and suppose

x(t) is a bounded nonoscillatory solution to (1); i.e., suppose x(t) > 0 for all

t > a> t  . Since  git) —► <*=, there exists a number  k such that  0 < xit) < k,

and 0 < xigit)) < k for all  t> ß>a fot some  ß.

Consider wit) = xit) - Rit), which is a solution to

(4) w<*\t)+ ait)f[wigit)) + Rigit))] = 0,       t>ß.

Since xigit)) = wigit)) + Rigit)) > 0 for t > ß, it follows from (ii) and (1) that

f[w(g(t)) + R(g(t))] > 0 and hence w^Ht) < 0. Moreover, since xit) and R(t)

ate bounded for / > ß, then so is w(t). Thus, if 72 is even, then w(t) > 0 for

t > y. > ß fot some  y.. Now choose  ttz  so that  t    > y..  Then for all t > t   ,

w(t) > wit' )  so that
—        m
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x(r) = wit) + Rit) > w(t) - A, > wz(r' ) - A,

= wit' ) + Rit' ) = xit   ) > 0.
m 772 m

Thus, w(t) - \2 > 0 for ail large  t.

If 72 is odd, then w(t) < 0 for all t >y2> ß, and w(t) - A   > 0 also;

for if w(t) — A. < 0 for some  r> A2, then since  w(t)  is decreasing, w(t) —

A., < 0 for all t > r.  In particular, there is some  z    > t tot which w(t' ) —
2 — — r ' 772 — m

A. < 0.  But  w(t' ) - A. = w(t' ) + R(t' ) = xit' ) > 0, which is a contradiction.
z — m ¿ m m m '

In either case, we now have

wit) + Rit) > wit) - A2 > 0

for larg'e  ¿.

Let  vit) = iz7(i) — \ ,  Then from (4), we have

fivigit)) + A, + R(g(r))]
tz^^i) + ait)-—1--fivit)) = 0

fivit))

or from (3) where

fivigit)) + A2 + Rigit))]
sit) = «(/)-——-.

fivit))

We now show sit) > ya(t) tot every y, 0 < y < 1. Since w^n\t) < 0 and

»(i) is bounded, then as before, w(t) > 0 if 72 is even, and w(t) < 0 if ?2 is

odd.  Thus, w(t) is monotone and therefore has a limit as  t —> °°.

Let Lim¿j00 ttXz) = L.  Then Limi^oo zr/gW) = L.

If L 4 A9, then
2'

f\.w(g(t)) + Rigit))]     fUgit)) - A.

fivit)) -   flwit)-\A

and

flwigit)) - A2]     /(L - A2)
Lim-=-= 1.
t^°o    fLwit)-\2]        fiL-X2)

Thus, there exists a number  T, such that given y, 0 < y < 1,

flwigit)) - A,]
> y    for all t > T,

fivit))

and hence, s(t) > ya(t).  By hypothesis (iv), v(t) is a solution to (3) and is,

therefore, oscillatory, which contradicts  v(t) > 0.  Thus, x(z") must be oscilla-

tory.
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If  L = A2, then  72 is odd, for if 72 were even, then w(t) > 0  implies w(t)

is increasing and wit) > A2.  Moreover, wit) = xit) - Rit) > A2, and for each

term of the sequence  \t  \,

wiQ = xit'n) - R(t'n) = xiQ + A2 > A2.

Since  Lim ^^ wit'n) = A2  also, then Lim _too xit') = 0 and therefore

Lim inf x(t) - 0.

The proof is similar if one assumes xit) < 0.

In order to handle the unbounded solutions to (1), it becomes necessary

to include some additional assumptions, and to state a lemma which is due

to Grefsrud [l],

Lemma.   Assume (i)—(iii) are satisfied and

(v) git) > / — c for large  t, where c  is any positive constant,

(vi) there exist positive constants ß, 8 such that /(Ax) > \Pfix)  if

x > 0  and /(Ax) < AS/(x)  if x < 0, A constant.

Let vit)  be a nonos dilatory solution to (3).   Then there is a real number

y, 0 < y < 1, such that fivigit))]/fivit)) > y for all large  t.

Theorem 2. // all solutions to (3) in Theorem 1 are oscillatory, then all

unbounded solutions xit) £ F to (1) are also oscillatory if the additional as-

sumptions (v) and (vi) of the lemma are included in Theorem 1 .

Proof.  Suppose  x(t) £ F  is an unbounded nonoscillatory solution to (1);

i.e., suppose x(t) > 0 and x(g(t)) > 0 for all / > a > t., for some  a.  Let

w(t) = x(t) - R(t), which satisfies

(4) w{n\t) + ait)flwigit)) + Rigit))] = 0,       t > a.

Since  Rit)  is bounded, then wit) is unbounded and

x(r) = wit) + Rit) > wit) - A2 > 0

for all t>ß>a fot some ß.

j) - A2< The

v(n\t) + ait) fivigit)) + A2 + Rigit))] = 0,

Let vit) = w(t) - A-, Then v(t) satisfies

or (3) where

fivigit)) + A, + Rigit))]
sit) = ait)-——-,        t > ß.

fivit))
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We now show that sit) > ya(t), 0 < y < 1. Since A2 + Rigit)) > 0, and /

is nondecreasing, then

fivigit)) + A2 + Rigit))]     f(v(g(i)))

f(vit)) -   fivit))    -r

where the last inequality is a result of the lemma.  Thus, sit) > yait), 0 <

y < 1.  But  vit)  is then a solution to (3) and therefore, oscillatory, which

contradicts  vit) > 0.  Thus, xit) must be oscillatory.  Again, the proof is

similar if one assumes  xit) < 0  for large  t.

Example 1.   For 72  even, if s(t) >y/tn, 0 < y < 1, then all solutions to

(5) x(n\t) + (1/fn)x\t + sin i) = cos(3i - 1)

are oscillatory, since all solutions to

(6) ¡c(n)(r) + sit)x\t) = 0

are oscillatory according to Theorem 1 [7].

In Theorem 2, the added restriction git) > t — c has been placed on g(t)

in order to guarantee oscillation for the unbounded solutions.  The assump-

tions in Theorem 1 are not sufficient to handle the unbounded solutions, as

the following example, due to Waltman [8], shows:

Example 2.  xit) = \/t   is a solution to

(7) xit) + il/2t2)xit/A) = 0,

but all solutions to

(8) xit) + il/2t2)xit) = 0

are oscillatory.  All nontrivial solutions to (8) are also unbounded, and git) =

t/A does not satisfy g(/) > t - c in (7).

The author would like to express his gratitude for the advice and sug-

gestions from his thesis advisor Gerald H. Ryder in the preparation of this

work, and to the referee for his helpful comments.
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