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THE WHITEHEAD THEOREM FOR NILPOTENT SPACES

S. M. GERSTEN

ABSTRACT.  An easy argument is given for the theorem of the title.

E. Dror [l] has published a far-reaching generalization of a classical

theorem of J. H. C. Whitehead.   An interesting case of Dror's theorem

which still causes wonder among topologists is the following result.

Theorem.   If f: X —> Y is a map of connected, pointed, Oil complexes

which induces an isomorphism on integral homology, and if X and   Y are

nilpotent spaces, then f is a homotopy equivalence.

We remind the reader that the pointed connected space  X  is said to be

nilpotent if  (a) 77.(X)   is a nilpotent group, and (b) for each n > 2  there is

a number r   > 0 such that / "n (X) = 0, where  /  is the augmentation ideal

of the group ring  Z[27.(X)].

As in Dror's result, the crucial step is a reduction to a theorem of

Stallings.

Lemma 1.    The map f of the Theorem induces an isomorphism of

fundamental groups.

Proof.   Consider the spectral sequences for the fibrations

X-»A-->KinxiX), 1)

Y->Y—>K(nx(Y), 1)

(where  X,  V are the universal covers of X, V).   From the low-dimensional

terms   exact  sequences,  one deduces  that  the  map   H (27, (X,  Z)   —►

H (77AY), Z)   is an isomorphism for 72 = 1  and an epimorphism for n = 2.

Since 77.(X)  and nxÍY)  ate nilpotent groups, Stallings' theorem [2] shows

that nxif): 77j(X) —► nAY)  is an isomorphism.
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Continuing with the proof of the Theorem, we may suppose /: X £-»   V

a cofibration, so H^(Y, X) = 0.   We prove inductively that 27 (Y, X) = 0, the

induction starting with 72 = 0.   Let  G = 77jX = ít. Y, the latter identified via

77,(/).   Assume that 77.(Y, X) = 0 for   2 < 72, 72 > 0.   We write the proof in the

abelian case  n > 1   in detail (the case  72 = 1  requires only a notation change).

Lemma 2.   77 (Y, X)/G-action = H (Y, X).
n n

This is elementary, proved using the Hurewicz theorem in the universal

covering spaces of X   and   Y.

Consider the exact sequence  n  Y AL, n ÍY, X)   A,   77     ,(X)  and the
^ n n 72— 1

short exact sequence of G-modules  0 —» Im / —> n (Y, X) —> Im d —' 0.1 ' 72

Since Im ; and Im d are, respectively, quotient-modules and submodules

of G-modules, by the nilpotence assumption, there is a number m > 0 such

that

/m(lm/) = /m(lmc9) = 0,

where  / is the augmentation ideal of ZG.    Hence  /     77 (Y, X) = 0.   But by

Lemma 2, since  H (Y, X) = 0, we have  tr (Y, X) = In (Y, X).   Thus 77 (Y, X)
n 77 72 72

Thus the relative homotopy groups  nJ^Y, X)  ate all trivial, and it

follows that /: X c_» Y  is a homotopy equivalence.
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