ON THE SCALAR CURVATURE AND SECTIONAL CURVATURES OF A TOTALLY REAL SUBMANIFOLD

CHORNG-SHI HOUH

ABSTRACT. For a totally real minimal submanifold of a complex space form, pinching for scalar curvature implies pinching for sectional curvatures.

Let $\widetilde{M}_{n+p}(\widetilde{c})$ be an (n+p)-dimensional complex space form with constant holomorphic sectional curvature \widetilde{c} , complex structure \widetilde{J} and metric \widetilde{g} . Let M_n be an n-dimensional real submanifold immersed in $\widetilde{M}_{n+p}(\widetilde{c})$ with the induced metric g. We denote by $T_x(M_n)$ and v_x the tangent space and the normal space, respectively, of M_n at x. M_n is called the totally real submanifold of $\widetilde{M}_{n+p}(\widetilde{c})$ if $\widetilde{J}(T_x(M_n)) \subset v_x$.

Let σ be the second fundamental form of the immersion, and H the length of the mean curvature vector of M_n . For a normal vector ξ on M_n , the tangential component $-A_{\xi}X$ of the covariant derivative $V_{x}\xi$ satisfies $\widetilde{g}(\sigma(X,Y),\xi)=g(A_{\xi}X,Y)$. We choose a local field of orthonormal frame

$$e_1, \dots, e_n, e_{n+1}, \dots, e_{n+p}, e_{1*} = \stackrel{\sim}{J}e_1, \dots, e_{n*} = \stackrel{\sim}{J}e_n,$$

$$e_{(n+1)*} = \stackrel{\sim}{J}e_{n+1}, \dots, e_{(n+p)*} = \stackrel{\sim}{J}e_{n+p}$$

on $M_{n+p}(\widehat{c})$ in such a way that, restricted to M_n , e_1, \dots, e_n are tangent to M_n . If we set $A_\alpha = Ae_\alpha$ (α , $\beta = n+1, \dots, n+p, 1^*, \dots, (n+p)^*$), then $\sigma(X, Y) = \sum g(A_\alpha X, Y)e_\alpha$.

Let R and R be the curvature tensor fields of $M_{n+p}(c)$ and M_n . Then

$$\widetilde{R}(\widetilde{X}, \widetilde{Y})\widetilde{Z} = \frac{\widetilde{c}}{4} \left\{ \widetilde{g}(\widetilde{Y}, \widetilde{Z})\widetilde{X} - \widetilde{g}(\widetilde{X}, \widetilde{Z})\widetilde{Y} + \widetilde{g}(\widetilde{J}\widetilde{Y}, \widetilde{Z})\widetilde{J}\widetilde{X} - \widetilde{g}(\widetilde{X}, \widetilde{J}\widetilde{Y})\widetilde{J}\widetilde{X} - \widetilde{g}(\widetilde{J}\widetilde{X}, \widetilde{Z})\widetilde{J}\widetilde{Y}, \widetilde{Z})\widetilde{J}\widetilde{Y} + 2\widetilde{g}(\widetilde{X}, \widetilde{J}\widetilde{Y})\widetilde{J}\widetilde{Z} \right\}$$

and the equation of Gauss is

$$\stackrel{\sim}{R}(X, Y; Z, W) = R(X, Y; Z, W) + \stackrel{\sim}{g}(\sigma(X, Z), \sigma(Y, W)) - \stackrel{\sim}{g}(\sigma(X, W), \sigma(Y, Z)),$$

Received by the editors December 5, 1973 and, in revised form, December 28, 1973. AMS (MOS) subject classifications (1970). Primary 53C20, 53B25; Secondary 53C40.

Key words and phrases. Totally real, minimal submanifold, scalar curvature, sectional curvature.

Copyright © 1975, American Mathematical Society

where X, Y, Z are vector fields on $M_{n+p}(C)$, and X, Y, Z, W are vector fields on M_n . Since M_n is totally real in $M_{n+p}(C)$ we have

$$R(X, Y; Z, W) = \frac{c}{4} \{g(X, W)g(Y, Z) - g(X, Z)g(Y, W)\}$$

$$+ \sum \{g(A_{\alpha}X, W)g(A_{\alpha}Y, Z) - g(A_{\alpha}X, Z)g(A_{\alpha}Y, W)\}.$$

The sectional curvature K(X, Y) ($\{X, Y\}$ in K(X, Y) is supposed to be orthonormal) and the Ricci tensor S(X, Y) of M_n are then given by

$$\begin{split} K(X, Y) &= R(X, Y; Y, X) = \frac{c}{4} + \sum \{g(A_{\alpha}X, X)g(A_{\alpha}Y, Y) - g(A_{\alpha}X, Y)^{2}\}, \\ S(X, Y) &= \sum_{i} R(X, e_{i}; e_{i}, Y) \\ &= \frac{n-1}{4} \stackrel{\sim}{c} g(X, Y) + \sum (\text{tr } A_{\alpha})g(A_{\alpha}X, Y) - \sum g(A_{\alpha}X, A_{\alpha}Y). \end{split}$$

Let ρ be the scalar curvature of M_n ; then we have

$$\rho = \sum_{i} S(e_{i}, e_{i}) = \frac{n(n-1)}{4} c^{2} + \sum_{i} (\operatorname{tr} A_{\alpha})^{2} - \|\sigma\|^{2} = \frac{n(n-1)}{4} c^{2} + n^{2}H^{2} - \|\sigma\|^{2};$$

here $\|\sigma\|$ is the length of the second fundamental form σ , $\|\sigma\|^2 = \sum \operatorname{tr} A_{cc}^2$ If M is a minimal submanifold, then H = 0 and $\rho = n(n-1)\frac{c}{c}/4 - \|\sigma\|^2$.

We need the following algebraic lemma which is proved in [1].

Lemma. Let a_1, \dots, a_n , b be n+1 $(n \ge 2)$ real numbers satisfying the following inequality:

$$\left(\sum_{i=1}^{n} a_{i}\right)^{2} \geq (n-1) \sum_{i=1}^{n} a_{i}^{2} + b \quad (resp. > 1);$$

then, for any distinct i, j; $1 \le i < j \le n$, we have $2a_j a_j \ge b/(n-1)$ (resp.>).

We now establish the

Proposition. Let M_n be a totally real submanifold of $M_{n+p}(\widetilde{c})$. If the scalar curvature ρ of M_n satisfies

(*)
$$\rho \geq n(n-1)/4 \cdot c + n^2(n-2)/(n-1) \cdot H^2 - a$$

at a point p, then every sectional curvature of M at p is $> c^2/4 - a/2$.

Proof. For the frame field, $\{e_1, \dots, e_{n+p}, e_{1*}, \dots, e_{(n+p)*}\}$, chosen above let

$$h_{ij}^{\alpha} = g(A_{\alpha}e_i, e_j);$$

then $A_{\alpha} = (h_{ij}^{\alpha})$, A_{α} is symmetric and

$$\|\sigma\|^2 = \sum_{i,j,\alpha} (b_{ij}^{\alpha})^2, \quad n^2 H^2 = \sum_{\alpha} \sum_{i} (b_{ii}^{\alpha})^2.$$

Let τ be any plane section of M_n spanned by two independent tangent vectors X, Y to M_n . We choose the frame field suitably so that e_1 , e_2 span τ , and that e_{n+1} is parallel to the mean curvature vector of M_n . Then we have

$$K(X, Y) = K(e_1, e_2) = \frac{c}{4} + \sum_{\alpha} \{h_{11}^{\alpha} h_{22}^{\alpha} - (h_{12}^{\alpha})^2\},$$

$$n^2 H^2 = \left(\sum_{i} h_{ii}^{n+1}\right)^2.$$

The assumption (*) is equivalent to $\|\sigma\|^2 \le n^2 H^2/(n-1) + a$. Hence we have

$$\frac{1}{n-1} \left(\sum_{i} h_{ii}^{n+1} \right)^{2} \ge \|\sigma\|^{2} - a = \sum_{i} (h_{ii}^{n+1})^{2} + \sum_{i \ne j} (h_{ij}^{n+1})^{2} + \sum_{\alpha > n+1} (h_{ij}^{\alpha})^{2} - a,$$

$$\left(\sum_{i} h_{ii}^{n+1} \right)^{2} \ge (n-1) \sum_{i} (h_{ii}^{n+1})^{2} + \sum_{\alpha > n+1} (h_{ij}^{\alpha})^{2} - a \right).$$

By the Lemma we have

$$2h_{11}^{n+1}h_{22}^{n+1} \ge \sum_{i \ne j} (h_{ij}^{n+1})^2 + \sum_{\alpha > n+1} (h_{ij}^{\alpha})^2 - a$$

$$\ge 2(h_{12}^{n+1})^2 + \sum_{\alpha > n+1} \{(h_{11}^{\alpha})^2 + (h_{22}^{\alpha})^2 + 2(h_{12}^{\alpha})^2\} - a$$

$$\ge 2(h_{12}^{n+1})^2 - 2 \sum_{\alpha > n+1} h_{11}^{\alpha}h_{22}^{\alpha} + 2 \sum_{\alpha > n+1} (h_{12}^{\alpha})^2 - a.$$

Hence we obtain

$$2\sum_{\alpha\geq n+1} \{h_{11}^{\alpha}h_{22}^{\alpha} - (h_{12}^{\alpha})^2\} + a \geq 0.$$

This yields

$$K(X, Y) > \frac{\sim}{c}/4 - a/2$$

If M_n is minimal, then H = 0; the Proposition yields the

Theorem. Let M_n be a totally real minimal submanifold of $M_{n+p}(\widetilde{c})$. If the scalar curvature ρ of M_n satisfies $\rho \geq n(n-1)\widetilde{c}/4-a$ at a point p, then every sectional curvature of M at p is $\geq \widetilde{c}/4-a/2$.

REFERENCES

- 1. B.-Y. Chen and M. Okumura, Scalar curvature, inequality and submanifold, Proc. Amer. Math. Soc. 38 (1973), 605-608.
- 2. B.-Y Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 257-266.
- 3. ———, On the scalar curvature and sectional curvatures of a Kaehler submanifold, Proc. Amer. Math. Soc. 41 (1973), 247-250.

DEPARTMENT OF MATHEMATICS, WAYNE STATE UNIVERSITY, DETROIT, MICHIGAN 48202.