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WHITNEY NUMBER INEQUALITIES FOR GEOMETRIC LATTICES

THOMAS A. DOWLING1 AND RICHARD M. WILSON2

ABSTRACT.   Let   L  be a finite geometric lattice of rank  r, and for

i  =0,  I, •• •» r, let   W. denote the number of elements of  L  with rank  i.

F or   1 < k < r - 2, we have   W, + W. + • • • + V, < W    ,+•••+ W    ., + W    ,
12 fe r—k r—l r—1

with equality if and only if the lattice   L   is modular.   We give two further

results concerning matchings of lattice elements of rank   < k into those of

rank > r — k, and observe that a middle term can be interpolated in the

above inequality.

1. Introduction. For a finite geometric lattice L of rank r, we denote

the number of lattice elements of rank i by IV ■ = W -(E). IV Q, W.,■••, W are

the Whitney numbers of the second kind.   Of course, W   = W  = 1.

There are several interesting conjectures concerning the Whitney num-

bers of geometric lattices.   Foremost among these is the unimodality conjec-

ture of G.-C. Rota which asserts that  W . > min|VV., W,\ whenever  /' < /' < k.

This is known to be true for partition lattices [9], til].   Another conjecture

asserts that  W.  < W     ■   whenever  k .< r. 2  in a geometric lattice of rank  r.

This would imply that   IV    < IV, < W2 < • • • < Wr   ,^\  (by applying the above

conjecture to truncations of the lattice).  All of these conjectures are valid

for geometric lattices with at most eight points [2] and "perfect matroid de-

signs" [13].

In [l], Kelly and Basterfield proved that  W. < W _ .   for geometric lat-

tices of rank r.   Another proof is given by C. Greene [7] who added the re-

sult that  IV. = Wr-1   holds if and only if the lattice is modular, and also

gave several results concerning the matching of the points into the copoints.

A third proof, by entirely different techniques, is given by Greene in  [8].

In this note we prove that  IV, + IV, + ••• + H',  < IV    ,+••• + IV    . + W     ,
r 1 2 k —     r—k r~2 r—l
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for geometric lattices of rank r with equality holding for some  k, 1 < k <

r — 2, if and only if the lattice is modular.  This provides some justification

for the empirical observation that geometric lattices are "top heavy" and is

not unexpected in view of Crapo and Rota's assertion [4] that "Roughly

speaking... everything which 'happens' in a geometric lattice also 'happens'

somewhere at the top of the lattice."

Our proof appeals to elementary linear algebra and Mobius inversion.

The inequality is proved by showing that a certain set of  VV _+... + IV'

vectors spans a  (W    + • ■ • + W, )-dimensional subspace of a vector space

VIE) introduced in '53-   These techniques also allow easy derivations of the

generalizations of Greene's results concerning matchings of points to co-

points (Theorems 2 and 3 of §5).  In Theorem 4 of §5, we give a further re-

sult to indicate possible variations of the methods.  A corollary of this result

is used as a lemma in a further paper [6] where the authors give lower bounds

for  W.   in terms of W¡  and the rank r of a geometric lattice.

2.   Preliminaries.   Definitions and results required in the sequel are

summarized in this section.   A detailed treatment of geometric lattices may

be found in [3] or [4].

A geometric lattice is a lattice  L  of finite height in which x •> y ix

covers  y) if and only if x = y \J p  for some point p ¿ y.  Here a point is a

lattice element covering the minimum element  0  of  L.   The maximum ele-

ment of a lattice   L  is denoted by   1, and a copoint is a lattice element

covered by   1.

The rank function p of a geometric lattice   L  is uniquely determined by

p(0) = 0    and    p(x) = p(y) + 1     whenever  x •> y,

and satisfies the semimodular law

(1) pix) + piy) > pix V y) + pix A y).

A geometric lattice is modular when  pix) + piy) = pix V y) + pix A y) for

all x, y £  L.   The rank of  L  is the integer r = pil).

For  a < b  in a geometric lattice, the interval [a, b] = \x £ L:a < x < b\

is also a geometric lattice.  When  a < x < b  in a geometric lattice, there

always exist modular complements of x in the interval  [a, b], i.e., lattice

elements  y  such that  x A y = a, x V y = b, and  pix) + piy) = pia) + pib).

The Möbius function [l2] of a finite lattice   L  is the integer-valued

function  p = pL  on  L x L with the properties  pix, y) = 0 unless  x < y,
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pix, x) = 1, and  ^-xSzSy pix, z) = 2xsz<y piz, y) = 0 whenever x < y.   From

these properties follows the principle of Möbius inversion: Given functions

/, g from  L  into an additive abelian group, fix) = 2       giy) for all x im-

plies  g(x) = ly2xßix, y)fiy), and  /(*) = ly¿xgiy)  implies  gix) =

2y<xMy. *)/(y).
We shall require the fact [12, Theorem 3] that for a geometric lattice,

pix, y) ^ 0 for x < y.

In [5, Lemma 2.2], Dilworth showed that in a modular geometric lattice,

Wk = Wr-k for all  k.

3.   A vector space.   Given a finite lattice  E, we introduce the free

vector space   VÍL) (over the rationals  Q) generated by the lattice elements.

Formally, we may take   V(E) to be the set of all mappings from  E  into  Q,

with the usual addition and scalar multiplication.   For each lattice element

x, let  /    £ VÍL) denote the characteristic function of the singleton subset

\x\, i.e.,

1     if y = x,

0    otherwise.

Clearly, the vectors  Ux:x £ L\ form a basis for  VÍL).

For each x £ L, let /    and  K% denote, respectively, the characteristic

functions of the subsets  \y £ L:y V* = ll and  \y€ L:y < x\. That is,

/    =       Y       I       and     K   =    V     / .
1 X Í-* y x í-i        y

y:y\lx = l y:y<x

The linear relations between the three sets of vectors !/ \,\j \,\K ] are

given in the following lemma in terms of the Möbius function p of the lat-

tice  E.

Lemma 1.    Let  L  be a finite lattice.   Then for each x £ L, the following

equations hold in  VÍL):

«   lx = ^y.y,xP^x)Ky.

m /x = 2y:y«My- i>-V
(iii)   pix,l)Kx = ly.yixpix,y)]y.

(iv)   // uia, l) ^ 0 for all a £ L, then

'x = 2- A(x< y)/v where A(x- y>=    ¿-   —;—^— •
y a:asXAy Mfl>   X)

Proofs.    For (i), apply Möbius inversion to the definition of  K  .  For

(ii), observe that

lxiy) =
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Z f(y,i>Ky-   Z  My, D   £   i,-£/   ^    ^.lA-W*
y:y>x y:y>x z:z<y z   \y:y>xVz /

y:l>y>xVz (°     otherwise.

Applying Möbius inversion to (ii), we arrive at (iii).

Assuming  pia, l)  is never zero,  (i) and (iii) give

ix.  £  pia,x)Ka=   X 5^   Z Ay)/y-I«*.y)/y.
/i(fl,  x)

a:a<x a:a<x "     '        y:y>a y

Remark.   With x = 0 in Lemma l(iii) and  0 ¿ a £ L,

piO, l)K0(a) = £ MO, y)]yia),     or 0 =      £      /«(0, y).

y y:yVa = l

This is one form of Weisner's theorem [12, p. 351].

4.   The main theorem.

Theorem 1.    For any finite geometric lattice  L, the Whitney numbers

satisfy

(2) W. + IV, + • • • + IV, < W    ,+••• + W     , + IV1 2 fc —      t — te r — 2 r- r

where  r is the rank of L  and 1 < k < r — 1.  If equality holds for some k,

1 < k < r — 2, //>ew ¿Âe lattice L  is modular.

Proof.   Let   U,   be the subspace of  V(E) spanned by the vectors

\¡x:pix) < k\, and let n:VÍL) —> Uk be the projection associating to each

mapping  E —• 0  of   VÍL) its restriction to the subset  \x £ L:pix) < k\.

That is,   77 is the linear mapping   V(E) —> U,   defined by

( /       if pix) < k,

7t{Ix) » { u       •
(0      otherwise.

Note that if piy) < r - k, then

>K/yJ =     Z    M/x) = o,
x :xVy = 1

since x V y = 1   implies  p(x) > p(l) + pix Ay)- p(y) > & by the semimodular

law  (1).
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For each x £ L  with pix) < k,  we have from Lemma l(iv),

K = Mg = Z ^ y)M/y) =     X     ^ yM/y).
y y:/0(y)ar-*

It follows that the  W     ,+••• + W     , + IV    vectors {tK/  ):p(y) > r - /U  span
r—fc r—l r Jyr^— r

the subspace  U,   which has dimension W. + W   + • • • + W,.  Since W. =

W   = 1, the stated inequality (2) is established.

We now assume that equality holds in (2) for some  k,   1 < k < r — 2.

Then, evidently, the vectors  \nij  ):piy) > r - k\ form a basis for the sub-

space   Uk.  For  x £ L with pix) = k + 1, we have from Lemma l(iv),

o = niix) =     £     ^x- y)M/y),
y-p(y)>r-k

and hence  Xix, y) = 0 whenever p(y) > r — k.

Now  x A y = 0 would imply that  A(x, y) = piO, x)pi0, y)/pi0, l) £ 0.

Thus our assumption of equality implies in particular that  x A y > 0 when-

ever p(x) = k + 1  and p(y) = r — k.   The proof of Theorem 1 is thus completed

by the following lemma.

Lemma 2.    Let L  be a geometric lattice of rank  r and  1 < k < r — 2.  If

x A y > 0 whenever pix) = k + 1  ara*/ p(y) = r - k, then the lattice  L  is

modular.

Proof.   Consider first the case k = 1.  If E   is not modular, there exist

elements  x, y £ L  with  pix) + piy) > pix A y) + pix V y). The image of a

maximal chain  C in  [x A y, y] under the order homomorphism z l—► x V z is

then a maximal chain in  [x, x V y] with repeated elements, so there must

exist three consecutive members  z^ <i z2^   z,  of  C with  x V z, <• x V z2 =

x V z,.   We may therefore assume without loss of generality   (replace  x by

JtVZj,   y by z,) that  pix V y) - p(x) = 1,   piy) - p(x A y) = 2.  Let  c be a

modular complement of x V y in the interval  [x, l] and let  / be a modular

complement of x A y in the interval  [O, y].  Then  pic) = r — 1,  p(/) = 2 and

i'Ac=/AyAc=/,AyA(xVy)A   c=/AyAx=0,

contrary to hypothesis.

Consider now the general case.  The hypothesis remains unchanged if we

replace  k by  r — k — 1, so we shall assume  k < r/2.

Suppose for contradiction, that  E  is not modular.  Then there exists a

copoint  c and a line  / such that  / A c = 0.  Choose  z > / with  piz) = k + 1

and put a = z A c.  We have  p(a) < £.   There are two cases.
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Case 1. pia) < k — 1. Let y be a modular complement of a in the interval

[0, c].  Then  piy) <> r - k, and z A y = z  Ac A y = a A y = 0, a contradiction.

Case 2. p(a) = &. Choose b > z with p(¿>) = 2& and let x be a modular

complement of z in the interval [/, b]. Let y be a modular complement of b

in  [a, l].  Then  p(x) = & + 1,  piy) = r — k, and

xAy = xA¿)Ay = xAa = xAzAc = /Ac=0,

contrary to hypothesis.

5.   Further results.

Theorem 2.   Ee/  L  be a finite lattice such that pia, l) ^ 0 for all

a £ L.   Then there exists a permutation f:L —> L  such that x V fix) = 1

for all x £ L.

Proof.   By Lemma 1 (iv),  {/   :x e L\ is a basis for  V(L). Hence the

matrix whose rows and columns are indexed by  E, the entry in row x and

column y  being

jl     if x Vy= 1,

x 10    otherwise,

is nonsingular.  Some term in the determinant expansion does not vanish,

i.e. for some permutation / of L,   J  (fix)) = 1  for all x £ L.

(Note that, necessarily,  /(0) = 1  and /(l) = 0.)

Remark.   The inequality of Theorem 1 is an immediate consequence of

Theorem 2 since for a geometric lattice  E,  / maps elements of rank < k

injectively into elements of rank > r — k.

By applying Theorem 2 to the dual lattice  E   , we have

Theorem 2 *.   Let  L  be a finite lattice such that piO, a) ^ 0 for all

a £ L.   Then there exists a permutation f   :L —• L  such that f   (O) = 1,

/*(l) = 0, and x A f*ix) = 0 for all x £ L.

This answers affirmatively a conjecture of D. G. Kelly [lO] that the

assertion of Theorem 2 * holds for geometric lattices.

An example of a nongeometric lattice for which Theorems 2 and 2 *

apply is the lattice of faces of a convex polytope, where  piE, F) is

(_l)din>(F)-dim(E) for faces  E < F-
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Theorem 3.    Let  L  be a finite geometric lattice of rank r and 0 < k < r.

Then there exists an injection g: \x £ L:pix) < k\ —> \ye L: piy) ;> r - k\

such that x < gix) for all x  in the domain of g.

Proof.   With the notation as in the proof of Theorem 1, we have seen

that \ni]  ):piy) > r - k\ spans the subspace   Uk.  By Lemma 1 (ii),

M/y) =    £   piz, lUKj,
z :z>y

so, evidently, \7TÍKz):piz) ;> r— k\ also spans Uk. Hence the matrix whose

rows are indexed by \x £ L:pix) < k\ and columns by iy e L:piy) > r - k\,

the entry in row  x and column  y being

\ 1    if x < y,
K W = {

y /0    otherwise,

has rank equal to the number of rows.  The existence of the injection g now

follows, since some maximal square submatrix is nonsingular.

Remark.    From Lemma 1 and with  T = \y £ L:piy) > r - k\,

pío, Di0 = £ Mo, y)"(Jy) =Z (   Z    M«. y)W, iUKz).
yeT z   \ysz,yeT I

The coefficient of ^t(0, l)/7(Kj) in this sum is  2   e T piO, y) = p^iiO, l),

where   L    is the  ¿th truncation of  E, i.e. the geometric lattice obtained by

identifying all elements of  L  with rank  > r — k.   In particular, the coeffi-

cient of  niK.) is nonzero.   This remark can be used to see that in Theorem 3,

the injection g can be chosen so that giO) = 1 (whenever k < r).

For a geometric lattice  L, let  Top^(L) and  Bot¿,(E) denote, respec-

tively, the sum of the top and bottom k + 1  Whitney numbers of  L, i.e.

Botfe(E) = WQ+ Wj + ••• + Wk,

ToPjfe(E) = Wf+ Wr_l + ■•■ + Wr_k,    where r = rank(E).

Theorem 4.   Let L  be a finite geometric lattice of rank r and fix a £ L

with pia) < r - k.   Then

Top^E) > ToP/fe(E) - ToPyfe(La, l]) + Botfe([a, l]) > Bot/fe(E).

Proof.   Applying Theorem 1 to the geometric lattice  [a, l], we hav e
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Topfe([«, l]) 2 Botada, l]) and the first inequality follows.

For z £ L, define  A    = 2;      ,,        I    £  VÍL).  Then whenever y > a in E,
' z x:xva = z   x ' *- '

(3) K   =      Y     A .
z :a<z<y

To prove the second inequality, it will suffice to show that the set of vectors

S = \d.Ky):piy) >r  - k, y ¿ a\ U ¡iriAj-.piz) < pia) + k, z > a\

spans  the   subspace   Uk   Qf   V(L).  From  the proof of Theorem   3,

\nÍK  ):piy) ~¿ r — k\ spans   Uk, so it remains only to show that  niK  ) is in

the span of 5 for y > a.   But this follows from equation (3) above and the

observation that the semimodular law (1) implies  ji\A  ) = 0 whenever piz) >

pia) + k.

With k = 1 and a taken to be a point, we have the

Corollary.   In a finite geometric lattice of rank > 2, the number of lines

{rank  2  lattice elements) on a given point plus the number of copoints not

on that point cannot be less than the total number of points.
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