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ABSOLUTE ZERO DIVISORS AND LOCAL NILPOTENCE

IN ALTERNATIVE ALGEBRAS

KEVIN McCRIMMON 1

ABSTRACT.   It has been conjectured that absolute zero divisors generate

locally nilpotent ideals in Jordan and alternative algebras.    A. M. Sun ko

has recently established this result for special Jordan algebras; in this

note we show how his method can be modified to establish the result for

alternative algebras.

Throughout we consider alternative algebras  21 over an arbitrary ring of

scalars  $.   Recall that an element  z of  21 is an absolute zero divisor if

z2I;z = 0.   An algebra is locally nilpotent if every finitely-generated sub-

algebra is nilpotent.   The strong semiprime radical S(2I) is the smallest ideal

53  of  21 such that  21/55 is strongly semiprime (contains no absolute zero

divisors), and the Levitzki or locally nilpotent radical L(2I) is the smallest

ideal  53 such that  21/53  contains no locally nilpotent ideals.

Slinko's Jordan result is used to establish

Lemma.   // an alternative algebra 21 z's generated by absolute zero divisors, then

the algebra ¿(21) of left multiplications of ?I z's locally nilpotent.

Proof.   The space J = \L  | x £ 2I¡ of left multiplications is a special

Jordan subalgebra of  End (21),   since  by  the  left  Moufang  formula

L  L  L    = L        and  L  L   = L   ->.   The algebra x(2I) is the associative
x    y    x xyx x    x x ¿ ö

envelope of /  in End (21).

If z is an absolute zero divisor in  ?I, then  L     is an absolute zero di-

visor in   /:   L  L  L   = L        =0.   Any monomial having an absolute zero
z   x   z        zxz ' °

divisor as a factor is itself an absolute zero divisor (using the fundamental

formulas   U      = L   U R    = R   U L    repeatedly to break up the   cZ-operator
xy x    y    x y    x    y        * ' r r

of the monomial until a  U   = 0 is reached), so if the absolute zero divisors
z "

generate  21 they actually span 21.   Now it is not in general true that if z.
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generate   21    then the  L      generate   /  and  £(21),  but it is clear that if the

z. span ?I then the  L      span  /  and generate  Jl(2I).   Thus  /  is spanned by
i

absolute zero divisors.   By Slinko's Jordan theorem [2, pp. 713—714] the

associative envelope  =L(2I) of /  is locally nilpotent.     D

We are now ready to state the alternative version of Slinko's theorem.

Slinko's theorem I.   An alternative algebra which is generated by

absolute zero divisors is locally nilpotent.

Proof.   Let   53 be a finitely-generated subalgebra of an algebra  21 gen-

erated by absolute zero divisors  z.;  we must prove 53  is nilpotent.   Now

each of the finitely many generators of  53  is by hypothesis a polynomial in

a finite number of the absolute zero divisors  z.,  so  53 is contained in the
z'

subalgebra  S  generated by all these finitely many  z..   It suffices to prove

£ is nilpotent.   Thus the theorem is equivalent to

Slinko's theorem II.   An alternative algebra generated by a finite number

of absolute zero divisors is nilpotent.

Proof.   Suppose   21 is generated by absolute zero divisors  z , • . • ., z  .

We know [l, Proposition 3, p. 290] that every element of 2F   is a linear

combination of "2nd order monomials" of the form w Aw A • . • w )),  where

each w. = z. (z. ( • • « z. ))  is a "1st order monomial" in the generators
12 s

z-,  and the degrees of the  w. add up to at least  k:  dw, + dw ^ + • • • + dw   > k.
i ' ° i r 12 r —

By the lemma there is an N = N(z , • • • , z ) such that

Lz    Lz     '" Lz = 0 for  s >N,

so

wi=Lz.   Lz.  ■■•Lz. K-)=0
2 . I -, Z , S

1 2 s — 1

if dw. = s > N.   Consider the finite number w,, • • • , w     of 1st order mono-
2 — 1' ' 772

mials  w. of degree <N.    Once more by the lemma there is an  M =

Miw,, • • • , w   )  such that
1' '772

w . iw. (• • • w. )) = L       L       • •. L (u/.)=0  for r>M
1     l2 *r"

'1 2 'r-1

rNMBut then 21        is spanned by w Aw A • • « w )) for dw   + • ■ ■ + dw  > NM,

where this monomial vanishes unless all dw. < N iw. = 0 if dw. > N), and
2 2 2   —

if all dw. < N then   rN > dw , + • • • + dw   > NM   implies  r > M,   so
z 1 r — r —

w A.wA. • . . w)) = 0 anyway.   Thus  2INA1 = 0 and  21 is nilpotent.     DD
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From this we can immediately derive some corollaries.

Corollary.    The ideal Z(2I) generated (or spanned) by the absolute zero

divisors is contained in the Levitzki radical,   Z(2I) C L(?I).     D

Corollary.   // 21 contains no locally nilpotent ideals, it is strongly

semiprime.     Q

Corollary.   5(21) C L(2I).     D

Thus in an arbitrary alternative algebra we have the chain of radicals

P(2I) c s(H) C L(2I) c M2I) c /(«)

for P the prime radical,  N the nil radical, and / the Jacobson-Smiley radi-

cal.

Since simple algebras are not locally nilpotent they have no locally

nilpotent ideals, hence

Corollary.    A simple alternative algebra contains no absolute   zero

divisors.     □

Of course, this also follows from inspecting the known classification of

simple alternative algebras.

Another result which follows without appeal to the classification of

simple algebras is the

Corollary.   A simple, commutative, alternative algebra is a field.

Proof.   It suffices to prove associativity.   A simple commutative alter-

native algebra cannot contain nilpotent elements, for if it contained nil-

potent elements it would contain elements with z   = 0,  and by commutativity

such z would be absolute zero divisors  (zxz = zzx = z x = 0 for all  x),

contrary to our previous corollary.   But any associator is nilpotent, [x, y, z]

= 0, so all associators must vanish and the algebra is associative.    D

Yet another result whose proof can be simplified is one due to Zhevlakov,

Ne, and others:

Corollary.   // 21 z's a simple alternative algebra, then  21    z's simple as

a quadratic Jordan algebra.

Proof.   Suppose  53 were a proper Jordan ideal of 21 .   Then its kernel

(the largest alternative ideal contained in 33) must be zero by simplicity of

21.   Now it is easy to verify that in general
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Ker33 = {/3 e 33]è2Ic53S = \b £ 33|2Iè C 8}

for a Jordan ideal 53, hence

(bxb)a = &íx(M! = Ufe>&a* - (MU&) = Ub     x - (7e(ßx) e U% ̂21 - í/^21 C 53

shows   (L.2I C Ker 33.   Thus when the kernel is zero, all elements of  33  are

absolute zero divisors, and therefore by the corollary,  53 = 0.    □

Remark.   The result we really want, of course, is   P(2I) = 5(21) rather

than just  5(21) C L(?I);  we want to know that a semiprime alternative algebra

contains no absolute zero divisors so that strong semiprimeness is equivalent

to semiprimeness.    Kleinfeld  [3] has proved this for characteristic / 3situ-

ations (where  21 has no  3-torsion or  321 = 21), but no one has been able to

extend it to the general case.   This is the main stumbling block to a classifi-

cation of prime and semiprime alternative algebras.

For many applications (such as the above corollaries) the weaker inclu-

sion 5(21) C L(2I)  suffices.   In characteristic / 3 the corollaries also follow

from Kleinfeld's  result.     D

Further remark.    Professor Michael Slater has pointed out that Slinko's

theorem can also be derived quickly from the known structure theory of

alternative rings.   The advantage of the present direct proof is that it bypasses

the difficult part of the structure theory (due to Shirshov) concerning p.i. rings;

indeed, it can be used in place of Shirshov's work to derive that structure

theory (as will appear in a forthcoming paper of Professor Slater).   It seems

that the really essential part of the Shirshov machinery is the part used in

proving Slinko's theorem (see the lemma below).     D

Slinko's proof was given for linear Jordan algebras over a field of

characteristic ^ 2.   His proof can be modified to work for quadratic Jordan

algebras over an arbitrary ring of scalars.   To make this paper self-contained

we will repeat (and thereby translate from Russian) the part of Slinko's proof

applying to alternative algebras, making the minor modifications necessary

for the case of an arbitrary ring of scalars.

Lemma.   Let z ,,■••, z    be absolute zero divisors in an alternative
V 72

algebra.    Then there is an integer N - 2"in + l)\   such that any product

L       • • • L of left multiplications  L      of length  N vanishes.
zix ziN

Proof.   We induct on n, n = 0 being vacuous.   Assume the result for n — \

absolute zero divisors, so any monomial in   L    , • ■ > , L of length
1 72—1
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zV„ = 2n~  n\  vanishes.   We claim that any monomial in  L     , • « • , L       of
0 ' z ,' '     z

1 72

length N = 2"(n + l)!  vanishes.

We can write any such monomial as

w(L, .•••,L„ ). L_   ...Lz
'l ¿N

z   '        '     z z.

where  w(x , • •• , x ) — x.   ... x.     is a word on the alphabet of letters
i 72 2 J Z^

x,, • ■ '  , x  .   We order this alphabet in the natural way, x, < x. < • • • < x ,
V n r ''12 72'

and induct on the lexicographic order of w.   This induction gets off the

ground since the lexicographically lowest word of length  N is  x.,  and

L       = L   k¡ = 0   by ze, = z,(ze~   )z, = 0 if  e > 3  and  z,   is an absolute
z \ z'v '       1 lv    1       '   1 - 1

zero divisor.

Assume the result for lexicographically lower words  w .   Write

e e

w = w .x   Lw, • • • w     ,x Tw
0   72       1 r—X   72      r

for exponents  e. > 1   and words  w.(x , • • • , x       ) not involving  x    where

w , • • • , w ate nonempty (we allow w   = 1 or w = 1).   The word w will vanish

when evaluated at the   L    , w(L     , • • • , L     ) = 0,  if any exponent  e. > 3
i I n

(since  L      = L      = 0 if  e > 3) or if any word w. has length > zVn (by the
zn % — l —      U

induction hypothesis for n — 1  absolute zero divisors).   Thus we may assume

e. < 2 and  dw. < zV„.   Then
Z   — 2 0

r r r r

in+ l)2"zz!= N = dw=   "E   e.+   Y    dw. <   ¿2   2 +   £   N n
10 10

= 2r + (r+ D/V0< (r+ 1)(2 + N0)< (r+ l)2zVQ= (r + 1)2"„!

forces n < r.

If one of the  w. fot  1 < í < r — 1   has degree   1,   say> w. — x.,  then again

z<y(L     , • • • , L     ) = 0  since already
Z 1 72

e. c -, , e.-1 e .   . -1
L'L    L   !+1 = L  l     (L    L    L    )L  t+1

z      z.   z z        v   z      z.   z        z
72 ; 22 72 7272272

e .-1 e .   , -1
= LJ     (L*   ,      )L  I+1      =0

z x    z   z .Z   '    z
22 72    ?     72 72

if z    is an absolute zero divisor.   Thus we may assume the monomials

w.,■•■, w have degree  > 2;  there are  r - 1 > n of these monomials and

only n - 1  variables  Xp • • • , x appearing in them, so two of them must

end in the same variable x  : w. = w'.x,, w. = w'. x,   tot  1 < /</ < r— 1.   We
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will rearrange the letters between these two  x, ,  obtaining lexicographically

lower words.

By [l, p. 286] there is a Jordan monomial p(x., •• • , x ) having as

lexicographically leading monomial

e .   , e .
2+1 2      '

V = x   l^Lw ., ,  " • x  'w .
72 2+1 72        7

(here it is crucial that v begins with an x    and ends with a lower letter,

since  w. = w'.x,   for degree  > 2 implies  w! is of degree > 1  on the letters

x,,•••- x      ,);  we write
1' '       72—1'

/>(*!>•"> x)= v + ¿_éVa

for associative words  v     lexicographically lower than  v. Then w = w vw" for

= (w. • • • w'.)x, - u x,

and

W   = WnW   *  . . . X    w .   = \w    • • • w .,„
0     72 72        2 0 l       k k

" 2+1 2 "
W   = X ,x  '^iw.   ,  • • • x  'w   = x,u  ,

k   n 7+1 72      r k

where

w'piLz , •.., Lz )w" = u Lz piLz ,.-., Lz )Lz u"
1 72 k 1 72 fe

= u'Lir  L..„ _   ,L     zz"    (by [l, Proposition 2, p. 285])
zfe plzi.*V z/fe

= u L       . -    zz   = 0
*fe*<*l.Zn)2ife

if z,   is an absolute zero divisor.   This allows us to replace  v by the   lower

v   in izj,

wiLz   ,--.,Lz ) = w'viLz ,.-.,Lz )w"
1 72 1 72

= w'p(Lz  ,-",Lz W - 2*w'va(Lz  ,---,Lz )w"
1 72 1 72

= - ¿Zw'va(Lz    ...,Lz )w"
1 72

= -Htva(Lz    ...,Lz  )
1 72

for w  = w'v w"  lexicographically lower than w = w' vw" (but still of the

same length N).   By lexicographic induction these wi\Lz , ••« , Lg ) = 0,
1 72
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hence  w(L    , • .. , L     ) = 0 too.   This completes both inductions, so any
1 n

L       •••£        = 0.     □
zi\ ziN
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