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TRIPLES ON REFLECTIVE SUBCATEGORIES

OF FUNCTOR CATEGORIES

DAVID C. NEWELL

ABSTRACT. We show that if S is a cocontinuous triple on a full re-

flective subcategory of a functor category then the category of S-alge-

bras is again a full reflective subcategory of a functor category.

This note should be considered an addendum to [4], and definitions

for all of the terminology and concepts we use can be found there.

We shall also fix V to be a closed bicomplete category and, in this

note, all of the category theory is done relative to  V.

In  [4], we have shown the following:

(I) If C  is a small category and  T  is a cocontinuous triple on the

functor category  V   , then there is a small category  C  and a functor /:

C -> C    so that

(a) T is the triple induced by the adjoint pair (/,/): V —► V ,

where / : V —> V is the functor induced by / and / is the left adjoint

of/*;

(b) the adjoint pair  (/   , / )  is tripleable, so that there is an equiv-
c ' c   T /~  T

alence of categories  V     = (V   )   , where  (V   )     is the category of  T-

algebras.

(II) If C  is a small category and  T  is any triple on V   , there is a

unique cocontinuous triple   T on  V      and a map of triples  r. T—»T   so that,

if  R:  C —>V     denotes the right Yoneda embedding of C    into the repre-

sentable functors of V   ,  tR   is the identity (we shall refer to  T  as the

cocontinuous approximation to  T).

In this paper, we shall prove the following

1. Theorem. Suppose  C   z's a small category, A  is a full reflective

subcategory of V    (i.e. the inclusion functor of A to \     has a left ad-

joint) and S z's a cocontinuous triple on A,    Then there is a small catego-
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ry  C for which the category of %-algebras A     is a full reflective subca-

tegory of V

The basic idea of the proof of this theorem is as follows: as we shall

see, S induces a triple  T  on  V     in an obvious way; we use (II)  to con-

struct the cocontinuous approximation  T  of  T, and then we apply (I) to  T

to obtain the desired category  C .

The rest of this paper is devoted to showing that the above outline

does indeed give a proof for the theorem.

Proof of the theorem. Let  A  and  B be categories and suppose  (/', r):

A—>B is an adjoint pair from  A  to  B with unit u: 1„—» zr and counit c:

ri —»1 ..   We shall let   R = (R, u, m) denote the triple on  B induced by

(z, r) (so that ztz = z'er).

Suppose  S = (S, r¡ , p.) is a triple on  A.   Then  S, together with  (z, r),

induces a triple  T = (T, r/, p)  on  B by letting  T = iSr, r¡ = (zr/ r) '  u  and

p = iip r) •  ii S e S r),   Equivalently, T  is the triple induced by the adjoint

pair obtained by composing the adjoint pair  (z, r): A—>B with the adjoint

pair ((7S, FS):AS-»A, where   Í7S:AS—► A is the usual "underlying" func-

tor from the category of  S-algebras to  A and  F    is the usual "free" func-

tor.

One obtains easily the following facts:

(1) there is a comparison functor  z' : A    -» B   ;

(2) there is a map of triples  6: R ^-»T  given by 9 = it] r.

2. Proposition. Suppose  A  is a full reflective subcategory of B, i.e.,

the inclusion functor i: A—*B  has a left adjoint r, S = (S, r¡ , p)  is a triple

on A, and T = (T, 77, p)  is the triple on B  induced by  S and (z , r).    Then

(a) the comparison functor  i : A    -» B      of (1)  is an equivalence of ca-

tegories, and

(b) if R = (R, u, z?z) z's the idempotent triple on B induced by the ad-

joint pair (i, r), then T = TR = RT and the map of triples 6: R—>T = RT

of (2)  is given by 6 = Rj].    Furthermore, p '  0T = p '  TO = 1_.

Proof, (a) Follows from Beck's tripleability theorem (see [7]).   For (b),

we have  RT = iriSr = iSr = T, as the counit  e: ri—»1.   is the identity.   Si-

milarly  TR - T.   Rtj = zr(z77 r •  u) = irir\ r ■  iru = ir\ r (as ri = 1 .   and  ru =

1 ) = 6.   p •  QT = ip r •  i S e S r •  ir¡ ri S r = ip r '  ir\ S r (as  e = 1  and  ri =

li) = iip.   '  r] S)r = z 1„ r(as  S is a triple) = 1^.   Similarly p '  T6 = 1_. ü

For the rest of this paper, let us make the following hypotheses.
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(*)

(i)   B is cocomplete and there is a small category  C  and a functor

k: C —» B which is dense in  B (see [7]);

(ii)   there is an adjoint pair (z, r): A —> B whose counit is the identity

(so that  A is equivalent to a full reflective subcategory of  B) and

R = ÍR, u, m)  is the idempotent triple on  B induced by (z, r);

(iii)   S = (S, r¡ , p ) is a cocontinuous triple on A and, for T = (T, 77, p),

the triple on  B induced by  S  and  (z, r), there is a cocontinuous triple

T = (T, 77, fi) on B and a map of triples  r: T —► T  with  rk = 1.

We note that if C is a small category, A is a full reflective subcate-

gory of V   , and  S is a cocontinuous triple on A (as in the hypotheses of

1), then  B = V   ,  k the right Yoneda embedding R: C   -» V   , and  T  the co-

continuous approximation of  T  satisfy the above hypotheses (*).

Recall that for X a category and for R = (R , u, m) and T = (T, 7?, p)

two triples on X, the composite triple of R and T is a triple RT = iRT,

ur¡, v) for which Rr¡: R—*RT and uT: T—>RT are maps of triples and for

which  v •  iRrjuT) = 1R7-.

3. Proposition. Under the hypotheses (*), T z's a composite triple of

R and T.

Proof, r, being an adjoint, is cocontinuous.   Since  rT = ri S r = Sr and

since rr: rT—> rT = Sr is a natural transformation between cocontinuous

functors for which  rrk = 1, and since  k is assumed dense, it follows that

rr is an isomorphism of functors.   Hence  Rr: RT —>RT = T is an isomor-

phism of functors.   Let  RT  be  RT with the triple structure induced by that

of  T via the isomorphism  Rr.   Since  77 '   r = 77, one has  (Rr) ■  iufj) = ur¡ = r¡

so that ufj is the unit of  RT.

Rrj: R—+RT is a map of triples, since Rr • Rrj = R(r • rj) = Rr) = 6 is

a map of triples.

We now show that uT: T—> RT is a map of triples.   Now (Rr ■  T)k =

Rrk • uTk = 1 •  uTk = uiSrk = 1  (as ui = 1 and r¿= 1).     Since  7'  is cocon-

tinuous and k is dense, T  is the left Kan extension of Tk along  k (see

[7, p. 232]).   The universal property of left Kan extensions gives us that

Rt • nl   = T, and since  r is a map of triples, so is  z/T.

Finally, if v is the multiplication of RT (induced by p), we have [v •

(RÍ772T)] = l/j^f   since, by §2, p • 6T = 1   so that the diagram
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Rrjnt

RTRT-
RrRr

commutes. O

4. Corollary. Under the hypotheses  (*), A    is equivalent to a full

reflective subcategory of ß '.

Proof. From  [2, p. 122]   and §3 we have a lifting of R  to a triple  R  on

B     and an isomorphism of categories  $: (B   )° J=L> B      .   But   RT = T

by  §3 so that  BRT = BT S AS by  §2.   Since the underlying functor from  BT

to  B is faithful and  R  is idempotent, the lifting  R  is idempotent. □

We note that Theorem 1 now follows from this corollary.

A problem arising from this theorem is the following: if C  is a small

category, A is a full reflective subcategory of V   , and  S a cocontinuous

S c'
triple on  A, then is  A     a full reflective subcategory of V       "of the same

type"?   For example, if V = Ab (the category of abelian groups), C  a small

abelian category, =L  the category of left exact functors from C  to  Ab, and

S a cocontinuous triple on Jl, then it     is a full reflective subcategory of

Ab       for some preadditive category  C  by our theorem, but is  C    abelian

and is £     the category of left exact functors from  C  to Ab?

The following is an example where the answer to this question is po-

sitive.

Let C  be a small category and let /  be a topology on  C making (C,

/) into a site (as in  [5, Definition 1.2, pp. 256—303]).   Let A be the cate-

gory of sheaves of sets on  C, so that A is a full reflective subcategory

of the functor category  (z, r): A—>Setsc°p, where  z: A—>Setsc°p  is the in-

clusion functor, then  R is a left exact idempotent triple (where "left

exact" means that the functor of   R preserves finite limits).

Now  Setsc°p  is an example of an elementary topos (as in  [6, p. 5])

and one sees that the topologies  /  on  C  are in one-to-one correspondence

with the topologies on the elementary topos  Setsc°p (as defined in  [6]).

One can then show (using [6, Proposition 3.22, p. 70]) that the assignment
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/ l-> R as in the previous paragraph gives a one-to-one correspondence be-

tween topologies  /  on C  and left exact idempotent triples   R on  Setsc°p.

5. Theorem. Let  C  be a small category, J  a topology on  C, A   the ca-

tegory of sheaves of sets on  C  with respect to J, and S a cocontinuous

triple on A.   Then there is a small category  C    and a topology ]    on C

so that A     is a category of sheaves of sets on C    with respect to J .

Proof. Let  B = Setsc°p, R  the left exact idempotent triple correspond-

ing to /, T  the triple on  B  induced by  S, and  T  the cocontinuous approx-

imation to  T.   Let  C    be a category for which  B    3? Setsc op (as in I).

S T ft
We have that A^ = (B   )   , where   R  is a lifting of  R.   Now the underlying

functor from   B     to  B is not only faithful but preserves and creates limits.

Therefore, since  R  is a left exact idempotent triple, R  must be also.   We

now let /    be the topology on  C    corresponding to   R, and we are done. D

The referees of this paper have pointed out that Theorem 5 follows

from Giraud's theorem (see  [3, pp. 108 — 109]) in the following way.   Since

S is cocontinuous, the underlying functor  U: A  —»A  creates both limits

and colimits.   From this one sees that A    is an exact category with limits,

colimits, and disjoint universal sums.   The free algebras in A     on the set

of generators in A  are easily seen to form a set of generators for A  .

Thus

lows.

Thus, by Giraud's theorem, A    is a topos, from which our Theorem 5 fol-
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