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A PROOF OF BERNSTEIN'S THEOREM

ON REGULARLY MONOTONIC FUNCTIONS

J. A. M. McHUGH

ABSTRACT.    A function is called "regularly monotonie" if it is of

class   (j      and each derivative is of a fixed sign (which may depend on the

order of the derivative).   We present a short proof of Bernstein's theorem

on the analyticity of such functions.

This paper presents a short proof of Bernstein's theorem [l] on "regu-

larly monotonie" functions.   For background on this subject (and a presen-

tation of Bernstein's original proof) we refer the reader to the brief survey

paper by Boas 12], and the references cited there.   The book [3] contains a proof of a

special case of Bernstein's theorem.   That proof for that special case par-

tially motivated the proof we present here.   Before giving our proof of

Bernstein's theorem, we recall that a regularly monotonie function is a func-

tion of class C    on a real interval (a, b) for which each derivative is of fixed sign

on  (a, b).

Theorem.   // F(x) is regularly monotonie on (a, b), then  F(x) is ana-

lytic on (a, b).

Proof.   We assume for convenience that  a = - b < 0.   We will prove that

the even part of  F(x),  f(x),  is analytic at x = 0.   An analogous proof holds

for the odd part of  F(x),  and the analyticity of  F(x) thereby follows.   We

begin by noting that f(x) is itself regularly monotonie on  0 < x < b.   The

following lemma is strategic for our proof.

Lemma.   // f{n)(x) < 0, f(n+l)(x) > 0,  and /(n+2)W > 0,  then for x £[0, b),

\R (x)\ > \R  +,(x)|,   where  R   (x)  is the mth remainder in the Taylor expansion

of f about x = 0.

Proof of Lemma.   Write the remainder as
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(1) RM = —-— fV" >(;)(* - t)n-ldt.
" (n -  1)! J 0

A sufficient condition for the Lemma to be true is that

(2) -f<"\t)-ll^lf("+i\t)>0
n ~

for t on (0, x).   Since  /("+I)(r) > 0, replacing m by 1  in (2) yields a suf-

ficient condition for (2) to be true; namely

-f("Xt)-(x-t)f(n+1)(t)>o,

or, if we write g for /     ,

(3) -g(t)-(x-t)g'(t)>0.

By Rolle's theorem there exists a if on (t, x) such that

(4) -g(f)-(x-f)g'(0 = -g(x)>O.

Since g" = /(n+2)>0, (3) follows from (4) (Q.E.D. Lemma).

If instead of the sign sequence of the Lemma one has either of the sign

triples +, +, + or +, +, -,  the Lemma's conclusion is immediate.   Only for

polynomials (analytic functions) can the triple +, -, + occur when / is even.

For, in this case, /(n) is even or odd.   If /(n) is even, say, then /("+1)(0) =

0.   By supposition, /("+2)(x) > 0 for x > 0.   Thus f(n+l)(x) > 0 for x > 0.

But also by supposition,  /(n+1)U) < 0 for x > 0.   Thus /("+1)(x) = 0   =»  /

is a polynomial.   An analogous proof holds for /'*' odd.   Since one of these

sign triples is always attainable (perhaps after /-»-/),  it follows that for

/ even

(5) |Rn(x)| > |RB+1M|     for « = 0, 1, 2, ••• ,

for x on [O. b).

Frequently /" and /"+1 are both > 0 (or both < 0) (else eventually sign (/(n))

= (-1)"       ==> / is polynomial).   Rewriting (1) as

(6) r (*).,—£—   Cf^Kxùd-ù^-^dt,
" (»-«!        J 0

then for, say,  f*$ and /"¿ + U > 0 and  x > 0,  one has

n ■

(7) Q<R   (x)<——(1f(niXb't)(l-t)ni-1dt,
"i "(22.-1)!      "'O
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where  x < b    < b,  since  /    «    is nondecreasing.   Thus

(8) 0<Rn(x)<(x/b')niRn(b').
i i

But  R  (b') is bounded, whence   R (x) -» 0 as  n -> oo. Since for  f(x) even,

R (x) = R  {-x),  this proves the analyticity of f(x), the even part of  F(x).

The analyticity of  F(x) itself then follows as initially indicated.
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