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THE F. AND M. RIESZ THEOREM1

FRANK FORELLI

ABSTRACT.     We weaken the hypothesis of the F. and M. Riesz theorem.

1. If X is a locally compact Hausdorff space, then we will denote by

M (X) the class of all Radon measures on  X.  Thus if p £ M  (X) and  E C X,

then  p(E) > 0.  We will denote by  M(X) the complex linear span of those  p

in  M  (X) for which  p(X) < <x¡.  If X is a locally compact abelian group, and if

p £ M(X), then we will denote (as is usual) by  p the Fourier transform of p.

We let   Z    = \k: k £ Z, k > 0¡.  We will denote by  y the  Lebesgue measure on

R.  The well-known F. and M. Riesz theorem (in one of its many versions)

states that if p £ M(R) and if p = 0 on  (0, oo),  then  p « y.  The purpose of

this paper is to point out that the condition on  p may be weakened as follows.

2. Theorem.2   Let   a   and   b   in   (0, oo)   be linearly independent over  Z,

and let S = \ja + kb: (j , k) £ Z    x Z   i-   If p £ ¡M(R) and if p = 0 072  S,  then

p « y.

3- With regard to Theorem 2 we remark that if t > 0,  then (0, t) n S is

finite.

4.  We will now prove Theorem 2.  We define  cp: R —> T x T by  cpit) =

ieiat, eibt) and we let  A = p oçT1.  Thus   A £ M(T x T).   If / £ C(T x T),

then   Ç fdk = // o cpdp; hence if  (/, k) £ Z x Z,  then

kij, k) = f z'wk dkiz, w) = f e-iUa+kb)tdpit) = pija + kb).

Thus Â = 0 on   Z   x Z  ; hence by [1, Theorem 6.2.2], if E C R and y(E) = 0,

then  A((/j(E)) = 0. Since  E = cp~1icpiE)), we have piE) = 0 which completes

the proof of Theorem 2.
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The referee  reports  that   Theorem 2 has also been obtained by Brian Cole.
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