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CONVERGENCE SETS IN REFLEXIVE BANACH SPACES

BRUCE CALVERT

ABSTRACT.    A closed linear subspace M of a reflexive Banach

space X  with  X  and  X*   strictly convex is the range of a linear con-

tractive projection iff J(M)  is a linear subspace of X*.  Hence the con-

vergence set of a net of linear contractions is the range of a contractive

projection if X  and X*  are locally uniformly convex.

Let X be a Banach space over C  or R, and let (T )  be a net of linear

contractions on X.  The convergence set for (T ) is \x e X: T x —> x\.
& 72 72

Bernau [l] showed that if X is an  L     space, p e (1, oo), then a convergence

set is the range of a linear contractive projection.   A simplification and gen-

eralization of this result follows from the characterisation of ranges of con-

tractive linear projections of Theorem 1, and is given as Theorem 2 below.

Let S  be a subset of X.   Then the shadow of 5  is the set of x in  X

such that T x —> x fot every net of linear contractions on  X  such that  T y

—>y  for all y  in  S.   Assuming X  to be an  L     space, Bernau [l] showed that

the shadow of S is the range of a contractive projection, and that if E  is the

range of a contractive projection, and E   contains  S, then  E  contains the

shadow of 5.  This result holds generally, and is given as Corollary 2.

Theorem 3 considers finding the projection in terms of the net (T ).

By a nearest point projection (on a subset  K of a Banach space X)   we

mean a function  Q  taking x in  X  to a nearest point in  K.

Lemma 1.  A set is the range of a linear contractive projection iff it is

the nullspace of a linear nearest point projection.

Proof,  g  is a linear nearest point projection  iff I - Q is a linear con-

tractive projection.

Theorem 1. Let X be a strictly convex reflexive Banach space with

strictly convex dual X . Let J: X —► X be the duality map; ||/x|| = ||x||,

(Jx, x) m \\x\\   .   Then a closed linear subspace M  of X  is the range of a
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linear contractive projection iff /(¡M)   is a linear subspace of X .

Proof.   Suppose }(M)  is linear.  Let  0  be the nearest point projection

on  ](M)   . (There exist nearest points since  X is reflexive, and only one

since X is strictly convex.)  For x e   X, Qx e ](M)     is defined by the

property that for y  in  J(M)   , (](x - Ox), y) = 0.  (The real part of /   is the

Gâteaux derivative of the function taking x to   ||x||  /2, since X    is strictly

convex.)  J(M)  is closed since /~     is continuous from the strong to the

weak topology (since X  is reflexive and strictly convex).  Hence, Qx is

defined by Qx e (J(M))     and J(x - Qx) e J(M), or x - Qx £ M.  This shows

Q  is linear, for if y e X, y - Qy £ M, Qy e (J(M))L, then (x + y) - (Qx + Qy)

£ M, and Qx + Qy £ (J(M)) , giving Q(x + y) = Qx + Qy, and similarly Q(ax)

= aQ(x).

Since Qx =0 iff x e M the result follows from Lemma 1.

Conversely, suppose  M = R(P), the range of a contractive linear pro-

jection.   If 772  e ¡M,

\P*Jm\\ < ||/m|| < IM,     and    (P*Jm, m) = Um, Pm) =

giving P Jm = Jm, since X is strictly convex. Hence, J(M) C R(P ). Re-

placing P by P and / by /"" (since X is strictly convex), ]~ R(P*) C

M, giving ](M) = R(P ), completing the proof.

Corollary 0.   Let X  be a reflexive Banach lattice with  X and X

strictly convex.   Then a closed subspace M  is the range of a positive lin-

ear contractive projection iff JM  is a linear subspace and sublattice of X

iff JM  is a linear subspace and M  is a sublattice.

Proof.   Let P  be a positive linear contractive projection.  Since  P  is

positive, for x in  X, P(x ) >(Px)  .   Replacing  x by  Px gives  P((Px)  )

> (Px)  . Let y be a convex combination of P((Px) )  and (Px)  .  Since X

is a Banach lattice, ||y|| > \\(Px)   ||.   Since  ||P|| = 1, the opposite inequality

holds.   By strict convexity, P((Px)  ) = (Px)   , which implies  M  is a sublat-

tice.   The argument applied to   P     gives J(M)   a sublattice.

Suppose JM  is a linear subspace and M  is a sublattice.   For x in  M

and y  in J(M)   , x    e M, giving

||*+||2 = ijix+), x) =  (/(.r + ), x + y) < (/U+), U + y)+) <   i|*+|| |U + y)+||.

If x + y < 0, then  x < 0.   Since X = M + JiM)1, the linear contractive

projection on  M  is positive.
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Corollary 1.   Let X  be as in Theorem 1.   Let (M .) .  .  be a net of ranges

of linear contractive projections.  Then  M =  \J. f|    M . is the range of a

linear contractive projection.

Proof.   /(U ((!■>*'■))= UÍ1 >  P )  is a linear subspace since

each J(M .) is.

Theorem 2. Let X be a reflexive Banach space, with X and X local-

ly uniformly convex. Then convergence sets are ranges of linear contractive

projections.

Proof.  Let (T )  be a net of contractions with convergence set ¡M.  If

m e M, (T   Jm, m) —> j|?72||   , and  \\T   Jm\\ < \\m\\, giving  T /tt2—>/772   since

X    is locally uniformly convex.  (If  Y  is reflexive and locally uniformly

convex, then given  y 4 0, and e > 0, there exists  8 > 0   such that if  ||x|| <

||y||, and  \\x - y\\ > e, then   ||(x + y)/2|| < ||y||(l - 5).  Hence if a subsequence

T*n>Jm —>y weakly, then   ||y|| = ||t7z||.   Since  ||T*,;m|| —> \\y\\, \\(T*,Jm + y)/2\\

—>|jy||,  which implies  T  , Jm —> y.   Since y   satisfies the inequalities de-

fining  Jm, y = Jm.)  Hence, M* D J(M)  where M* = {/ e X*: T* / -, f \.  Sim-

ilarly, M 3 /     (M ), giving equality.   The result follows by Theorem 1.

Corollary 2.   Let X  be as in Theorem 2.  Let S C X.   Then the shadow

of S  is the smallest convergence set containing S.

Proof.   By definition, the shadow of S is the intersection of all con-

vergence sets containing 5, which is a convergence set by Theorem 2 and

Corollary 1.

Corollary 3.   Let X  be as in Theorem 1  and (T )  a net of linear con-

tractions.   Then  \x: T x —> x\, the weak convergence set, is the range of a

linear contractive projection.

Proof.   By the proof of Theorem 2.

Lemma 2.  Let X be a reflexive Banach space, with X and X    strictly

convex.  If M   is the range of a linear contractive projection  P, it is the

range of only one.

Proof.   By Theorem 1, / - P  is the nearest point projection on  ¡V(P) =

R(P*t = (/M)\

Lemma 3.  Let X  be a reflexive Banach space with X and X   strictly

convex.   Given a finite set (T )  ,,-■  of linear contractions, then the linear
1 nn£r      ' '

contractive projection on  \x: T x = x  for n  in  F\ is lim_      lim,       A.    ,
r      ' n ' /j-K>o        k-*oQ     p ,2e
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(¿77 the strong operator topology), where

6-1   / *-l        \j

7 = 0   \72eF 1=0 /

and the product can be taken in any order.

Proof.   For n  in  F, let P     be the linear contractive projection on

N(l — T ), unique by Lemma 2.   By the mean ergodic theorem, T (k) =

(l/ft^zlT1   converges to  P  .
2 ~ 0        72 ° 72

By induction we show II   ,,P  x = x, where  I C F, implies  P  x = x fot
' 72 el   n ' —     '       r 72

n in  /.  Suppose it is true for 772  elements in  /; then for n  in  F, suppose

P  Yl.^TP.x = x. If y is a convex linear combination of x and U.,,P.x,
n   i£I   1 J i£l   1   '

then  P y = x, giving  ||y|| = ||x||.  By strict convexity, x = Ü.£/P.x, giving

P x = x for x in  / by the inductive hypothesis, and hence  P x = x.  Hence,

n nu - t) = n m/ - ?B) = ,v(/ - n p\
neF 72 V       neF        '

By the mean ergodic theorem, the nonexpansive projection on this set

is lim _>oo(l /p)2i>I0 (UP )'.   By continuity of multiplication of operators

in the strong topology, we can take the limits outside, giving the formula.

Lemma 4.   Let X be a reflexive Banach space, and A = iA )   ,_  a net
1 r        ' n n es

of bounded linear operators on X, \\A   \\ < M for all n.  Define NiA) =

jx: A   x —► 0! and RiA) = jv: there exists a subnet   iA  ,   A    ,^.  of A,
72 x    ' J n(my met      >       '

a bounded set of X, jy  ,   .: m e T\, and for N  in  T there is a set of positive> ' 72(77ï) '-. .   * J    c

numbers   aN   for finitely many    m > N   in   T,  2   a"  =   1,  and y =

lim.,2   aNA  ,   ,y  ,   A.
¡V       722      272      72(722)^ 72(772)

Then by defining A    = (A   ), we have R(A)   = N(A ).

Proof.  Take / e N(A*), y e R(A), y = lim.,£   aNA  ,   .y ,   ., where
' *      " ' x   " ' N    772    772    n(m)Jn(my

Il y ,   .11 < K for all 772.  Then
M/72(t22)!I    —

(/, y) = lim//,  V aNA   .   ,v  .   A = lim/k*,  ,/, V aNr  ,   ,\
'       ' K'        *—l        722       72(772)7 72(772) 1 1       77(722)2'     ^^ 7727 ntm) J

<TTrïï ||/í*,  J||K = 0.— "   72(722)2 II

Suppose instead that / e R(A)  .  We wish to show that if T is a cofinal

subset of S, then (A    /)   £_. has a subnet converging to zero.   Take y    =
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J~  A  f for n  in  T.  By weak compactness, there is a weak cluster point

y for (Ay)   €T.  For N in  T, y is in the weak closure of \A y : p e T,

p > N\, and hence the strong closure of its convex hull.   Thus for U  a neigh-

borhood of y, we can take  a    ■    > 0, for p > N, p in  T, nonzero for only

finitely many p, 2   a^'U = 1, so that 1 aN'VA  y    £ U. Let Q be the di-

rected set of neighborhoods of y; then for   (p,   U)  in  T x Q, putting A.    ...

= Ap   gives iAptU)íp¡u)eTxQ  a subnet of (Ap)peS  and

¿~>     P        PyP,
(N.U)eTxQ  p

giving y £ R(A).  But

o- li-ftE-j^vA-iim r^üK/ii2>üaM;/ii2'
(N,l/)\       ô V       (N,U)   * PeT

completing the proof.

Theorem 3.   Let X be a reflexive Banach space with  X and X    strictly

convex.  Let (T )   rC.  be a net of contractions such that x = lim T x implies72   72 ^i ' 72 l

x = T x  eventually.   Then the convergence set M  is the range of the linear

contractive projection

A = lim lim      lim     lim  Ap   ,,
N FeQN  i>—°° k—°°

where QN is the set of finite subsets of the set of elements p  of S, p > N,

directed under inclusion.  A^   ,   is defined in Lemma 3.
p ,fe '

Proof.  M = UN£SDn>NN(/ - T ).  By Corollary 1, M is the range of a

linear contractive projection.  Set / - T = (/ - T )   e¡¡.  By Lemma 4, X =

¡M + cl R(I - T).  Given c > 0, for x in  M   and z in   cl R(I — T), take y  in

R(l - T),  Il y - z || < í/3, let y = lim.,S   aN(/ - T,   ,)y   .   ., where ||y ,   ,||
x "     II' " ' 7 N      722      772 n(my J n(mV lly77(772)u

< K, take N, aN, such that x £ N(l - T) fot n> N and ||y - SaN(/ - T ,   Ay ,   ,||—       ' '       772' v 72' — "^ 772 72(772)' 72(272)"

<f/3. Take   FN  the support of aN, F = n(FN), and set

77-1

<.*-? Z(n r.(*>).
^    7=0   X"eF

where  T (¿) = (l/k)^.k_} Tl, and some order is chosen in the product.
72 2 _0        72' *

Choose p  and q by Lemma 3 so that ||a£ffeSo.^(/ - rn(m))yn(TO)|| <e/3.

Then
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K> + *) - -II < u;tk<* - r)l + U<> -2X" - TnMhnim?¡

+ K,k^<{1-Tn(Jyna
< ill + ell + ell,

proving the claim.
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