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EQUIDISTANT SETS AND THEIR CONNECTIVITY PROPERTIES

J. B. WILKER

ABSTRACT.  If  A   and   B are nonvoid subsets of a metric space  (X, d),

the set of points   x e X for which   d(x, A) = d(x, B) is called the equidistant

set determined by  A   and   B.    Among other results, it is shown that if  A

and   B  are connected and  X is Euclidean 22-space, then the equidistant

set determined by   A   and  B is connected.

1.   Introduction.   In the Euclidean plane the set of points equidistant

from two distinct points is a line, and the set of points equidistant from a

line and a point not on it is a parabola.   It is less well known that ellipses

and single branches of hyperbolae admit analogous definitions.   The set of

points equidistant from two nested circles is an ellipse with foci at their

centres.   The set of points equidistant from two dis joint disks of different

sizes is that branch of an hyperbola with foci at their centres which opens

around the smaller disk.   These classical examples prompt us to inquire

further about the properties of sets which can be realised as equidistant

sets.

The most general context in which this study is meaningful is that of

a metric space  (X, d).   If A is a nonvoid subset of A', and x is a point of X,

then the distance from x to A   is defined to be

dix, A) = inf\dix, a):  a £ A \.

If A  and  B  are both nonvoid subsets of  X then the equidistant set

determined by A  and  ß   is defined to be

U = r5| = {x: dix, A) = dix, B)\.

This notation admits convenient generalization to ÍA < B\ = \x: dix, A) <
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dix, B)\ and ÍA < B\ = \x: dix, A) < dix, B)\.

The properties of equidistant sets which can be established in a general

metric space are discussed in the next section.   Then the metric space is

specialized to Euclidean 72-space and a more detailed analysis is made of

their topological properties.

2. Equidistant sets in metric spaces.   In terms of the point-set distance,

the closure of a set A   is just A = \x:dix, A) = 0}.   It follows easily that

dix, A) = a\x, A) and, therefore, that \A = B} = ,A = BÎ.   In general,

IA = ß! 0 A n B   because these points have distance zero to both sets.   If

A  u B = X, then ÍA = ßl = A n B  because other points have a positive

distance to one set and zero distance to the other.   If  A = B, then

ÍA = ß! = X.

The function dA : X —> R  defined by dAix) = dix, A) is Lipschitz and

therefore continuous.   The sets \A = B}, \A < B\ and {A < B\ ate,

respectively, the inverse images of 1 OÍ, (- °°, O]  and (- 00, 0)  under the

continuous function dA — d   .   It follows that {A = ß! and \A < B] ate

closed while ÍA < B\  is open.   Trivially, {A < B\ = ,A < B\ u U = ßi, but

it is not generally true that i A = ß}  is the boundary of  {A < B\.

Not only are equidistant sets always closed, but, conversely, any

nonvoid closed set A  is an equidistant set.   This is true because (A = X} =

A n X = A.   The connectivity of X is related to the possibility of the void

set being an equidistant set.

Theorem 1.   The metric space  X  is connected if and only if equidistant

sets in X are never void.

Proof.   If X is not connected, X = A u B for some pair of nonvoid

closed disjoint sets A  and B.   Then {A = ßS = AOß=0   .

It remains to show that this cannot happen when X is connected.   If

A   and B  are nonvoid subsets, then  ÍA < B\  is nonvoid because it contains

A.   Thus X = ÍA <  B! U\B < A\ is the union of nonvoid closed sets, and

if X   is connected, their intersection \A < B\ Ci ÍB < A! = ¡A = Bj  must be

nonvoid.

3. Equidistant sets in Euclidean 72-space.   If  E  is an 772-dimensional

flat in Euclidean 72-space, the distance from a general point to a point of

E  may be determined from distances measured in  E and perpendicular to

E.   It follows that if A  and B are subsets of E, then \A = B\ is a cylinder

based on \A = BÎ n E.
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If A   is nonvoid closed set in Euclidean 72-space, then dix, A) =

dix, a A tot some point   a     in A.     For if dix, A) = 8, the closed ball of

radius  S + 1   about  x meets  A   in a compact set C, and dix, A) =

infWx, a): a e C\  is realized as a minimum.   This useful remark is instru-

mental in proving

Theorem 2. // A and B are nonvoid subsets of Euclidean n-space

such that A n B = 0, then \A = B\ has void interior and is the common

boundary of \A < B\ and {B < A\.

Proof.   Let e e \A = B\ where  A   and  ß  satisfy the conditions of the

theorem.   Then die, A) = die, B) = 8 > 0.   The open ball of radius  8 about

e contains no points of  A   or ß  while its bounding sphere contains at

least two distinct points  a    e A  and b    £ B.   If a point x on the half

open radial segment ie, a A  has distance  5. < 8 from a., then the closed

ball of radius  8.   about x meets  A U ß  at the single point a  .   It follows

that ie, aQ] C ÍA < B\, and similarly that (e, b ] C \B < A).   This gives the

theorem.

As an application of the theorem, consider a finite or denumerably

infinite family A .ii £ I)  of nonvoid subsets of 72-space which satisfy

A . O A . = 0 fot i 4 j.   Then for "most" points x in the 72-space, the

numbers  dix, A .) (í e /)  are all different.    The reason for this surprising

fact is that an equality occurs only if x lies in some \A . = A ,J.   But the

theorem shows that these sets are nowhere dense and so a countable union

of them is only of first Baire category.

We  are  prompted to  ask for  a complete  description  of the

equidistant sets that are determined after the fashion of Theorem 2.   How-

ever, this remains an open question, and so we return now to the issue of

connectivity.   The main theorems stated below do not make use of the

hypothesis  A n B = 0 .

Theorem 3.   In Euclidean n-space if A = \a\  is a singleton and B

an arbitrary nonvoid set, then \A = B\   is either connected or the union

of two parallel hyperplanes.    The second case arises if and only if

a £ B  and B  is a subset of a line through a which meets both of the rays

into which a divides it.

Theorem 4.   In Euclidean n-space if A  and B  are nonvoid connected

sets, then \A = Bj   is connected.
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It is not true that if A   and  B   are path connected then IA = B]  is path

connected.   An amusing counterexample in the plane is given by two inter-

locked combs.   Let

A = \ix, 1): x> OS u \ix, y): x=l/n, -1 +l/n<y < 1, re=l, 3, 5, •••!

and

B = \(x, -1): *> 0|u(U y): % = l/n, -l<y<l-l/n, n = 2, 4, 6, • • •!.

Then S¡4 = ßi  is the closed halfplane, x < 0, together with a curve resembling

the graph of y = sin l/x, x> 0, but made up of segments of straight lines and

parabolas.

Before starting to prove Theorems 3 and 4, let us notice how their

analogues break down when the metric space is changed from Euclidean

72-space to the circle   \eiQ: 0 < 6 < 2n\.    Here, if A = ! l!  and  B = {- l!,

the equidistant set {A = B\ = \i, - i\ which is not connected.   As the proofs

will indicate, part of the problem is that the circle is not simply connected.

But more is at stake because the counterexample still stands if the circle is

replaced by its simply connected subset \e    : 0 < 6 < 377/2!.

The proofs of Theorems 3 and 4 are developed in the following sections.

4.   Proof of Theorem 3.   In this section A = \a\ is a singleton and B

is an arbitrary nonvoid subset of 72-space.

Lemma 1.    The set \{a\ < ß!  is convex and therefore connected.

Proof.   The set \{a\ < B\ is the intersection of the closed hálfspaces

\\a\<\b\\ with b £~B-\a\.

Lemma 2.   If a £ B, the equidistant set \\a\ = B\  is connected.

Proof.   If a £ B, dix, B) < dix, a)  and so \\a\ = ß! = \\a}.< B\.   The

result follows from Lemma 1.

For the rest of the proof of Theorem 3 it is possible to assume that

a é B.   Let R  denote an arbitrary closed ray issuing from the point a,

and  HÍR.) the open halfspace bordering a with R  as inward pointing normal.

The ray R meets the equidistant set exactly when  HÍR.) meets  B  and then in

a single point  eiR) 4 a.

We shall prove (Lemma 3) that if the rays from a ate given the

topology of a sphere about  a, then the mapping  R —>e(R)   is continuous.

Also (Lemma 4) for dimension 72 > 2   if every line through  a meets the

equidistant set, then the domain of this mapping is connected.   These two
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results prove that the equidistant set is connected.

On the other hand, if there is a line L  through  a which misses the

equidistant set, then the set  B   must be in the  (72 - l)-dimensional flat  E

through a perpendicular to  L.   Thus the equidistant set is a cylinder based

on \\a\ = ßi   C[ E and will be connected if and only if this  (72 - l)-

dimensional equidistant set is connected.   An inductively chosen sequence

of lines and orthogonal flats may terminate at dimension  m >2  in a

situation where a connected equidistant set is guaranteed by the argument

of the preceding paragraph.   Then \{a\ = B\ is a connected cylinder.   Al-

ternatively the induction may prove that  B   is a subset of a line   E    through

a.   Then \\a\ = BÎ  is either a single hyperplane or a pair of parallel hyper-

planes depending on whether  B   meets just one or both of the rays into

which a divides  E..

Lemma 3.   The mapping R —'eiR) is continuous.

Proof. Let R„ meet the equidistant setat e(ßj. Let dieiR A, B) =

dieiRA, bA for b. £ B. Then the hyperplane Sí«! = \bA\ provides an

outer bound for points  eiR)  on rays   R  neat RQ.

Since  a 4 B  there is a closed ball about  a lying in }(a|.<Bi.    Since

\\a\ < ß!   is convex, it contains the cone of tangents from e(#0) to this

ball.   The cone provides an inner bound for points  eiR)  on rays   R  neat

R0.

Lemma 4.   In dimension n > 2, if every line through a meets the

equidistant set, then the set of all rays which meet it is connected.

Proof.   If R.   and  R2   fail to meet the equidistant set they meet at an

angle 6 <n.   If R  is a ray in the angle  6, then because  HÍR) C HÍR  ) U

HÍR2), it fails to meet B, and consequently R  fails to meet the equidistant

set.   Thus on any great circle the rays which fail to meet the equidistant

set lie on an arc, and those which do meet it on the complementary arc.   If

R~  is a fixed ray which meets the equidistant set, every other ray which

does so may be joined to  RQ by a great circular arc of rays of the same type.

5.   Proof of Theorem 4.   If Euclidean 72-space  E   = A U B, where A

and  B  are nonvoid closed and connected, then A O B   is nonvoid and

closed, but is it connected?   The remarks about equidistant sets in metric

spaces show that with the preceding conditions  \A = B! = A O B, so the

answer must be yes if Theorem 4 is true.   The next lemma reduces Theorem

4 to this special case by allowing us to replace given connected sets  A   and
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B  by the sets ÍA < ß!  and Iß < A\ from which \A - B\  may be determined

as  \A <B\ n\B <A\.

Lemma 5.   // A  and B  are nonvoid subsets of E     and   A   is connected,

then \A < B\  is connected.

Proof.   Because point-set distances are realized in closed sets, ¡A < B\

is the union of the sets \\a\ < ß! with a £ A.   By Lemma 1, \\a\ < B\ is

connected.   Since  A   is connected and \\a\ < B\ n A D \a\, it is possible to

include  A   in the union and deduce that \A < B\  is connected from the

standard result on unions.

A result analogous to the one required to complete the proof of Theorem

4 is provided by

Lemma 6.    If E   = Y u Z  where   Y and Z are nonvoid, open and' 72 c

connected, then  Y Pi Z  is connected.

Proof.   Since   V  and  Z  are open, the Mayer-Vietoris sequence of

homological modules is exact.   The tail of this sequence is

-iHjiE) -* H0iY n Z)^ II0iY) © //Q(Z) — H A/E ) - 0.

Since  E     is contractible, its first homology group is trivial and the

sequence reduces to

0 -* H0iY nZ) -» H0iY) ® H0iZ) -. HQiE) -. 0.

Open connected subsets of E     are path connected, and the dimension of

H.  counts the number of these components.   It follows that   Y O Z   is path

connected.

The proof of Theorem 4 is completed with

Lemma 7.   If E    = A U B, where A  and B  are nonvoid, closed and' 72

connected, then A C\ B  is connected.,

Proof.   If A n B  is not  connected, then A n B = Cj U C2  for nonvoid

disjoint closed sets   C,   and  Cv   Since  E     is normal, there are disjoint> 1 2 72 '

open sets   (7. such that C. C U. (z = 1, 2).   Replace these open sets by

open sets   V.C (/. which can be written as the union of open balls centred

in  C Ai= I, 2).   Then define   V = V, U V,   and write   Y = A U V and
2 ' 12

Z = B u V.

Since AnßCV,  Y=ß   uV and is open.   Since   V is equal to A

together with certain open balls meeting  A, it is connected.   Similarly  Z
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is open and connected.    By Lemma 6, Y n Z = V is connected.   But  V  =

Vj U V2   is the union of nonvoid disjoint open sets.   This contradiction

completes  the proof.

6.   Addendum.   H. Bell and S. K. Kaul have independently suggested an

alternative proof of Lemma 5.   They define f: E   —>  A such that dix, A) =

dix, fix))  and remark that if x e\A < B\ then the closed segment [x, fix)] C

\A < B\.   This approach may be compared with the proof of Theorem 2.

S. Ferry has kindly drawn my attention to a number of related references.

In [l] H. Bell proves that if  A   and B   are disjoint closed connected subsets

of E2  then {A = ß! is a 1-manifold.   He also presents a counterexample to

show that the analogous result is false in  E,.   In [2]—[4]  other authors

investigate the distance function dA: E   —»  R  to see when its level sets are

in - l)-manifolds.
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