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WELL-DISTRIBUTED SEQUENCES WITH RESPECT

TO SYSTEMS OF CONVEX SETS

H. NIEDERREITER1

ABSTRACT.   A theorem of W. M. Schmidt concerning the existence of

sequences which are extremely well distributed with respect to suitable

convex sets is generalized.  We prove the  existence of sequences which

are simultaneously well distributed with respect to suitable systems

of convex sets.  The proof depends on combinatorial results dealing with

the distribution of sequences in finite and countable sets.

1.  Introduction.  For s > 2, let \JS = K^, • • • , zz5) e Rs:  0 < zz. < 1

for  1 < i < s] be the s-dimensional half-open unit cube.  We consider a se-

quence x., x2, • • •    of points in  \JS.  For a positive integer n  and a

Lebesgue measurable subset 5 of \JS, let Z(n, S)   be the number of  r, 1 <

r <n, with  x   £ S.  We define the local discrepancy D(n, 5) = \Z(n, 5) -

rzA(5)|, where A  denotes the s-dimensional Lebesgue measure, and E(S) =

sup   D(n, 5).  In a recent paper, W. M. Schmidt has shown the following re-

markable theorem which is connected with the notion of isotropic discrepancy

(see [1, Chapter 2]) and results on irregularities of distribution in [6], [7], [8].

Theorem 1 (Schmidt   [8]).   For any  s > 2, there exists a sequence x.,

x , • • -    in  \JS such that for every p  with 0 < zx < 1  there is a convex sub-

set S of Us  satisfying A(5) = p and E(S) < Y2.

In this note, we prove a generalization of Theorem 1 to systems of con-

vex sets.   The basic idea is to combine Schmidt's method with some deep

results in combinatorial theory pertaining to the distribution  of sequences

in finite and countable sets.  Our final result is as follows.

Theorem 2.   For any s > 2, there exists a sequence x., x,, • • •   in   \JS
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satisfying the following property:  for every integer k > 2 and any numbers

p.,••-, p.   in [0, 1]   with  X ._. p. = 1, and also for any sequence p., p2,

•••    of numbers in [0, l]  with  X00-,. p.= l, there are convex subsets 5,,--- ,

Sk (resp. 5j, 52, • • • )  of \JS with  A(5 .) = p . for 1 < /' < k (resp. 1 < /' < <*>)

and E(S .) < 1 - l/(2ze - 2)  for  I <j <k (resp. E(S .) < 1  for 1 < j < oo), arz¿

such that every point x    o/ ¿At? sequence lies in a unique S ..

We note that the case  k = 2  in Theorem 2 yields Theorem 1 (see also

Remark 2).   To avoid a trivial case, we remark that if p . = 0  for some  /', we

may take the corresponding 5 .  to be the empty set.   Thus, in the sequel, we

can assume that 0 < p . < 1  for all  j.

2. Some combinatorial lemmas. In this section, we collect some useful

facts concerning the distribution of sequences in finite and countable sets.

This subject was studied recently in a number of papers [2], [3], [4], [5], [9].

For k > 1, let /., j2, • • •    be a sequence of elements from the set  Z, =

Í1, 2, •• • , k\.  Given integers n > 1  and / £ Z., we define the counting

function A(n, j)  to be the number of r, 1 < r < n, with ;   = /.

Lemma 1, (Meijer [2]).   For any k > 2 and any numbers p., • • • , p,   in

(0, 1)  with X.-.zi. = 1, there exists a sequence /,, /' , •••   in  Z,   satisfying

\A(n, j) - np . | < 1 - l/(2& - 2)  for all n > 1  and all j £ Z,.

For a sequence /'     /', •••    of elements from the set Z    = ¡1, 2, ••• \,

wë define the counting function A(n, j)  in a like manner as above.

Lemma 1     (Tijdeman [9]).   For any sequence p., p2, • • •    of numbers in

(0, 1)  with X°°=1 p. = 1, there exists a sequence /., /,, •••   zn  Z^  satisfying

\A(n, j) — np . | < 1  /or ßz7 w > 1  azzzz7 / > 1.

To combine the two cases, we write t. = l/(2ze - 2)   for 2 < ze < oo  and

e^ = 0.  In order to unify the discussion, k may also attain the value oo  from

now on.  We need a simple auxiliary result complementing the above two lem-

mas in the case of some p . being close to   1.

Lemma 2.   Let  2 < k < oo, let the p.., j £ Z,, be as in Lemma  1,, and

suppose that Vi < p, < 1  for some h £ Z,.   Let m  be the largest integer

such that p   > 1 — I/772.   Then there exists a sequence j., j7, •••    in  Z,

with j  = h for  1 < r < [m/2]  and \A(n, j) - np . \ < 1 - e,   for all n > 1  and

all j £ Z,.

Proof.   According to Lemma 1,, there exists a sequence  Zj, z'2, •••in
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Z,   with   |A(tz, /') - np . | < 1 - e,   fot all  n > 1   and all  / £ Z,.  In particular,

we have

A([m/2] + 1, h) > ([m/2] + l)H - 1 + efc.

Using  ?7Z > 2, it follows that

Ai[m/2] + 1, h) > i[m/2] + l)(l - l/m) - 1 + ffc

> [272/2] - 1 + í¡e > [zzz/2] - 1.

Since A([m/2] + 1, A)  is an integer, we arrive at A([m/2] + 1, h) > [772/2].

Thus, at most one of the i    with   1 < r < [tzz/2] + 1   can be different from h.

It remains to consider the case that i   4 h  for some  r with   1 < r < [m/2].

We define a new sequence /'., 7', • • •    in  Z.   by setting /'   = h  fot 1 < 72 <

[m/2], j   = i    for 22 = [m/2] + 1, and  /   = z     for 72 > [m/2] + 1.  For  1 < 72 <
' 'n r ''7222 —      —

r - 1, and also for 72 > [tzz/2] + 1, the counting functions A(t2, 7)  of the old

and the new sequence are identical.   For r < 72 < [772/2], the counting function

of the new sequence satisfies

|A(t2, h) - nph\ = nil - ¡ih) < n/m < % < 1 - (k,

and

|A(«, 7) - 72«.I = np. < n/m < 1 - e,

for 7 / h, since in this case p . < l/m.  Therefore the new sequence enjoys

all the required properties.

3.  Proof of Theorem 2.  We observe that it suffices to prove the theorem

for s = 2.   For if Xj = (xv y^), x2 = (x 2, y2), • • •    is a sequence in   U

serving the desired purpose, then for s > 3  the sequence x, , x   , • • •    in

U    defined by x    = (x , y  , 0, • • • , 0) for 72 > 1  will do.   To see this, one

just has to take for any  k, 2 < k < 00, the convex subsets  S ., j £ Z, , of U

associated with a possible choice of numbers p., j £ Z,, according to The-

orem 2, and to replace them by the convex subsets 5 ' = 5. x US_  > / e Z,, of \JS.

We consider now the case  s = 2.  Let  t., t?, • • •    be a decreasing se-

quence of real numbers with 0 < t    < l/(8n)  fot n > 1, and put

x    = (x , y ) = (l - cos t  , sin / )
72 72      y72 72' 72

for 72 > 1.   All the points x    lie on the circle (x — 1)    + y    =1.   For a given

k, 2 < k < 00, let the p ., 7 £ Z, , be numbers in the interval (0,  1) with

2£Z   p . = I.  According to Lemma 1,, there exists a sequence /., 7', •••
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in  Z,   with   |A(tz, /) - np . \ < 1 - e,   for all « > 1   and all  / £ Z,.  In case

Vi < p. < 1  for some h £ Z,, we suppose also that the sequence /,, j2, • • •

satisfies the additional condition in Lemma 2.   For / £ Z,   and tz > 1, let

F(n, j)  be the set of those x ., 1 < z < 72, with 7. = 7.   We have of course

card F(72, 7) = A(tz, 7), and therefore

(1) jcard F(t2, 7) - np.\ < 1 - f,     for all 72 > 1  and all 7 £ Z,.

Moreover, the sets  F(t2, 7)   and F(tz  , 7 )   are disjoint as soon as  7 4- j •

For fixed 7 £ Z, , we define a convex subset G,(/)  of  U    by letting

Gji/)  be the convex hull of the points x    appearing in some F(n, j).  It

follows from (1) that lim ^^ card F(t2, 7) = 00.  In addition, the sequence

card F(t2, 7), 72 = 1, 2, • • • , is nondecreasing and attains all positive inte-

gers as values.  Let t22  be the smallest positive integer with  card F(n2, j)

= 2.  Then there exists 72,, 1 < 72, < tz.,, such that x    , x      £ F(?2,, j) C1' —       1 2' 72 . '       722 v     2*   '       —

GAj).  It is easily seen that KGAj)) is at most the area of the triangle

bounded by the y-axis, the line segment joining x       and the origin, and the

line joining x       and x    .  Hence we get
'Or) rt O

"l "2

A(G,(y)) <lAy„   =lA sin/      <V2tn    < 1/(16t2_).

On the other hand, it follows from (1) with n = n2  that  | 2 — n2p. \ < 1 - t, ,

and so n?p>l.   Therefore X(GAj))<p/l6<p..

For fixed 7 £ Z,, we define a convex subset  G2(7)  of  U    as follows.

If 0 < p. < 72, let G2(j)  be the convex hull of the triangle 0 < x < 1, 0 <

y < 1, y < x, and of the points x.  appearing in some  F(n, j).  Then A(G2(/))

> Vi > p ■.  If 72 < p ■ < 1, let 772  be the largest integer such that p . > 1 - I/772.

Then  GAj)  is taken to be the convex hull of the points x¿   appearing in

some  F(tz, 7)   and of the open quadrilateral with vertices xrm/2]> (1» 0)i

(1, 1), and x*, where x* = (x*, 1)  is the intersection of the line y = 1   and

the tangent to the circle (x - 1)    + y    = 1  at xrm/2]-   The quadrilateral

contains the open rectangle with vertices (x*, yrm/2l)> (1> >Tm/2])' ^'  ^'

and (x*, 1)  of area

^-**^-y[m/2]> = ^-y[m/2]>2^-*[m/2rx-

Therefore

A(G2(7')) > (1 - y[m/2])2 > 1 - 2y[m/2] = 1 - 2 sin i[m/2]

> 1 - 2z*|-m/2-| > 1 - l/(4[m/2]) > 1 - 1/(772 + 1) > p.,
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since 4[?tz/2] > tzz + 1   for m > 2.  Thus in both cases we have A(G2(/)) > p ..

The proof is completed as in [8],   By construction, we have GAj) C

GAj), and it was established above that A(G,(/)) <p. < A(G2(/)).   There

exists a convex subset 5 . of U    with G .(;') C 5. C GAj)  and A(5 .) = p ..

Again by construction, we have

G ¡if) P Ixj, ••-, xJ = G2ij) P [Xj, •••, xj= F(t2, /)

for all 72 > 1; therefore 5 . P ¡Xj, • • • , x^l = F(tz, /')  for all 72 > 1.  By ( 1),

we get

D(t2, 5y) = |Z(t2, 5y) - 72A(5;.)| = |card F(t2, /) - np.\ <l-tk

tot all 72 > 1, and so   E(S ■) < 1 — e,.   From the definition of the sets  F(t2, /),

it follows that every x    lies in at least one 5..   Furthermore, for z, / £ Z,

with   i 4 j, the intersection  5. O 5.  cannot contain any  x  , for otherwise

F(tz, i) P F(n, j)  would be nonempty for some « > 1.

4.   Concluding remarks.   To what extent is Theorem 2 best possible?

We add some remarks concerning this question and related matters.

Remark 1.   The constant   1 - e,   in Theorem 2 is best possible.   For

suppose there exists  <5, > e,   such that Theorem 2 holds with  E(S .) < 1 — t,

replaced by E(5.) < 1 - 8,. We note that for every 72 > 1  there exists a

unique 7    £ Z,   with  x    £ S. .  Consider the sequence 7'., /",, •••    in  Z,.

We have A(«, 7) = Z(n, S ■)  for all 72 > 1   and all 7 £ Z,, and so

\A(n, j) - np.\ = |Z(t2, 5.) - 72A(5.)| < 1 - Sfe.

Thus for any choice of numbers p ., j £ Z,, in [0, 1] with S .   „   p,.« 1,

there would exist a sequence in   Z,   satisfying  \A(n, 7 ) — np . | < 1 — 5,   for

all tz > 1   and  7 £ Z,.  However, this contradicts a result of Tijdeman [9].

Remark 2.  If 1 < k < 00  and the p., j £ Z,, are numbers in [0, l]   with

Z .£ -   p ■ < I, one may introduce the number pQ = 1 - S .£ _   p . and apply

Theorem 2.  One arrives at a result analogous to Theorem 2, with the bounds

on the E(S .)  being   1 - l/(2ze)  for finite k  and  1  for k = 00, and with the

last condition replaced by the following one: "every point x    of the se-

quence lies in at most one 5 .".

Remark 3.  If 2 < k < 00  and the p., j £ Z,, are numbers in [O, l] with

2ez   p. > 1, then a result analogous to Theorem 2 cannot hold, even if we

allow the dependence of the sequence on the p. and relax the conditions on

the 5..  For suppose Xj, x2, •••    is a sequence in   Us for which there

exist measurable subsets 5., 7 £ Z,, of  \JS  with  ÁÍ.S .) = p . and E(S .) <
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B,   for all  7 6 Z,   and some finite  B,, and such that every x     lies in a

unique 5..  Using the same arguments as in Remark 1, we arrive at a se-

quence in  Z,   satisfying  \A(n, j) - np.\ < B,   for all  72 > 1   and all  7 £ Z,.

It follows that lim  _oaA(n, ;)/n = p ..  On the other hand, by choosing

p £ Zk  with  2y = ,/^ > 1, we get

. _    ..      r, Ain, j)      _,
1 >   hm    £ —— = 2>; > l>

"-°°,'=1 7 = 1

a contradiction.

Remark 4.   If the sequence x«, X-, •••    in Theorem 2 may depend on  k

and the numbers p ., j £ Z,, a much simpler construction can be given.   For
' • .1

each  i £ Z, , define A. = X*=1fz..  and 5 . = [A._ j, A.) x U^-     (with  AQ = 0).

Choose apoint y. £ 5..  Let 7,, 7', •••    be a sequence in  Z,   satisfying

the property in Lemma 1,.   Then for the sequence x,, x2, • • •    in  U     with

x   = y.  , 72 > 1, the intervals S ., i £ Z,, meet all the requirements of The-

orem L.
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