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EIGENVECTORS AND MAXIMAL VECTORS

IN BOOLEAN VECTOR SPACES1

RONALD L. SINZDAK

ABSTRACT.  In this paper it is shown that every idempotent, self-

adjoint linear endomorphism in a finite-dimensional normed Boolean vec-

tor space has its norm as an eigenvalue.  A completely algebraic proof is

also given for the fact that every linear endomorphism in such a space

possesses a maximal vector.

1. Introduction.   The concept of a normed Boolean vector space (or vec-

tor space over a Boolean algebra) was first introduced by N.V. Subrahman-

yam in [3].   In [4], the same author defines a linear endomorphism of a

Boolean vector space and P. V. Jagannadham [l] considered eigenvectors

of such transformations.

It is the purpose of this paper to continue the study of eigenvectors and

eigenvalues in normed Boolean vector spaces with finite bases. The main

result is that every projection (idempotent, selfadjoint linear endomorphism)

has its norm as an eigenvalue. The notion of a maximal vector is introduced

and it is shown that every linear endomorphism has such a vector. It is also

seen that a selfadjoint linear endomorphism with norm 1 has the property

that the image of any maximal vector is a maximal vector.

2. Throughout this paper, V is a normed Boolean vector space with a

finite basis  G*  and H  is the set of all linear endomorphisms of  V.  Also, it

is shown in [4] that for all  x in   V and g in  G*, x = S (x, g)g.

Lemma 2.1.  Every (nonzero) element of V  is an eigenvector of a linear

endomorphism  T  if and only if every element of G*  is an eigenvector of T.

Proof.   The necessity is clear.

For the sufficiency, suppose  Tg = À g.  Let  x £ V  and let À =
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S (x, p)à .  Then
g      °    e

ax=frix, «uWu. g)g\=e r/zu *>*,y* *>]«

=2>« «} v= £u g)Tg = Tfe u g)g)= rx-
g 8 \ 8 /

Thus, x  is an eigenvector of T. Note also that À = |Tx|   so that  |Tx|   is an

eigenvalue of T.

Corollary.   T  is a projection if and only if every (nonzero) element of V

is an eigenvector of   T.

Proof.   This follows from the above and [l, Theorem 10].

Theorem 2.1.   Let  T £ H  and let A*  be the set of eigenvectors of T.

Let A  be the set union of A* and \0\.  Then A  is convex.

Proof.  Let x, y £ A  and let  a £ B.  Let w = ax + a'y.  If x = y = 0,

then  w = 0 £ A.   Ifx=0  and y £ A*, then  w = a y where  Ty = ßy for some

ß £ B.   Thus, Tw = T(a'y) = a'Ty = a'ßy = ßa'y = ßw so that w £ A.   Sim-

ilarly, if y = 0 and x £ A*, then w £ A.

Now suppose x, y £ A .    Then Tx = ax and Ty = ßy for some  a, ß e

B.   Let \= aa + a'ß. Then

Tw = Tiax + a'y) = aTx + a'Ty = aax + a'ßy

= iaa + a'ß)iaax + a'ßy) = iaa + a'ß)iax + a'y) = \w.

Thus, if w / 0, then w £ A* and A  is convex.

Remark.  It is easily shown that every linear transformation on a finite-

dimensional Euclidean space has an adjoint.  Such is not the case in a

Boolean vector space.   The following lemma gives a necessary and sufficient

condition for an adjoint to exist.

Lemma 2.2.  Let T £ H.   Then T has an adjoint if and only if iTg, Th)

= 0 for all g, h £ G*, g / h.

Proof.  If g, h,  k £ G*, and T*  exists, then for g/ h, iTg, k)iTh, k) =

(g, T*k)ih, T*k) = 0 so that iTg, Th) = 2fc(Tg, k)(Th, k) = 0.

Conversely, if iTg, Th) = 0 for g 4 h, then iTg, k)(Th, k) = 0 for g 4 h

and define  T*k = Sg(Tg, k)g  so that ÍT*k, g) = iTg, k) = (k, Tg) fot all  g,

h £ G*. Hence T*  is the adjoint of T.

Corollary.   // T*  exists, then  \T\ = \T*\.
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Proof.   Since  |T| = 2  \Tg\   and \Tg\ = l.iTg, k) we have

M =Z (HTg. k)\ -2Ä(» r**)\ =£|r*g| = [r*|.
8    U /        8\* /        8

Terminology.   If T* exists, we shall henceforth say that 7* is ad-

jointable.

Lemma 2.3.   // T is adjointable, then  TT* and T*T are projections.

Thus, if  T is selfadjoint, then  T     is a projection.

Proof.   By linearity, we have that for each g £ G*,

TT*ë =£ fe<*' T*g)iTk, h)h\ = £ [¿(TA, g)iTk, h)h\.
k   \_h J        k   \_h J

But iTk, g)(Tk, h) = 0 if g / h.  Thus, TT*g = [lkiTk, g)]g so that TT* is

a projection.

Also, T*Tg = Zk[lhiTg, k)iT*k,h)h] = 2fc[2Ä(Tg, A) (TA, *)*].  By

Lemma 2.2, (Tg, ¿) (TA, ze) = 0 if g / h.   Thus, T*Tg = [2fe(Tg, *)lg  and

T*T is a projection.

Lemma 2.4.   If x, y £ V, then (x, y) < \x\ \y\.

Proof.   By the homogeneity of the inner product, |x| \y\ (x, y) =

(|x|x, |y|y) = (x, y)  so that  (x, y) < \x\ \y\.

Lemma 2.5.  Let T £ H and x £ V.   Then  \Tx\ < |T| |x|.

Proof.   Since (x, g) < \x\   and   |7g| < \T\,

\Tx\ = T Z{x-S)g 2>- g)Tg
8

-SU«)|r«|<|*nn.
g

Theorem 2.2.   If T is adjointable and x £ V, x / 0, then  |T*Tx| =

|Tx|   flTzri x  is an eigenvector of T*T with eigenvalue   \Tx\.

Proof.   By Lemma 2.5,   |T*Tx| <\T*\\Tx\. Thus, |T*Tx| <\Tx\.  By

the definition of inner product,   |Tx| = (Tx, Tx), and by Lemma 2.4,

iT*Tx, x)< \T*Tx\ \x\. Thus,

|Tx| = (Tx, Tx) = iT*Tx, x) < \T*Tx\\x\ < \T*Tx\

and so  |T*Tx| = \Tx\.

It is shown in [2] that if B     is the set of all eigenvalues associated

with x, then B    = \X £ B: \Tx\ <X< \Tx\ + \x\'\.  It follows then from this,
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from Lemma 2.3, and from the above that  T*Tx = |T*Tx|x = |Tx|x.

Remark.   It can be shown by induction that if \b., b2, ■ • • , b  ]  is a

finite subset of B, then  b. + b'lb2 + byb2b~ + ■ ■ ■ + blb2 ■ ■ ■ bn_ lbn =

1"    ,b .
z = 1   z

Definition.  Let  T £ H.   An element  x in  V  is called a maximal vector

of  T it and only if  |x| = 1   and  | Tx| = \T\.

Theorem 2.3.   Every linear endomorphism has a maximal vector.

Proof.  Denote the elements of G*  by g ,, g2, ■ ■ ■ , gn-  Let  T £ H  and

suppose  Tgt = Z"k = 1aikgk  where  aipaim = 0 if p 4 m.   Let  &¿ = |Tgf| =

£"_  a., .   Let cZj = bl   and for  1 <  z < tz,   let   a. = b'yb'2 ■ ■ ■ bi_yhi.  Finally,

let a   =ia + a   + ••• + a      ) . Note that if i < 72, a< b ..   Clearly a{an = 0 for

each  i 4 n.  Now suppose   i < n,  j < n and  i / ;'.   Say   i < j.   Then  b{  appears

as a factor in the representation of a..  Thus, a a. < b b . = 0  so that the

"a."  are pairwise orthogonal.

Let x = 2"=1a;.g¿.   Then   \x\ = a^ + a2 + ■ ■ ■ + a^ = a^ + a2 + ■ ■ ■ + «n_ l

+ ia1 + a2 + ••• + «n_ j)' = 1.

Now Tx = 'Ï.^^.Tg. = £?    a.(1,1£_lajkgk).  By the orthogonality of co-

efficients, |Tx| = ll = 1lf = la.a.k.  But

n      n n /   n \ n

fe = l z' = l z' = l \ze = l        /        iml

By the definition of a.  and by the preceding remark, it follows that

ln .a.b. = 2" ,b.. Hence, |Txl =2" ,b. = 2n ,\Tg.\ = \T\   and  x is a max-
Z=l     !     Z Z = l     7 >    I I ¡_1     ¡ 7 = 11      Ojl I       I

imal vector of  T.

Remark.   From Theorems 2.2 and 2.3 it follows that a selfadjoint linear

endomorphism T has a maximal vector x, which is an eigenvector of T

with eigenvalue  |Tx| = \T\. In particular, if T is a projection, \T\   is an

eigenvalue of T.

Theorem 2.4.   Let  T  be an adjointable linear endomorphism with maxi-

mal vector x       Let yQ = |T|TxQ + |T|'x„.   Then yQ   is a maximal vector

of T*.

Proof.   First, |y0| = |T||Tx0|  + | T\'\ xQ\ = | T\ | Tj + | T\ '  l=\T\ + \T\' = 1.

Now  T*y0 = |T|T*Tx0+   | T\ ' T*xQ= \ T\ T*TxQ   since \T*X()\<\T*\ |xQ| =

\T\   and hence  T*yQ = | T\ \ Tx0\x0 = | T|xQ. Thus,  | T*yQ| = | T\ = | T*\.

Remark.   It follows from the above that if  T  is an adjointable linear

endomorphism with norm 1 and xQ  is a maximal vector of  T, then  TxQ  is a
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maximal vector of T*.  In addition, if T is selfadjoint with norm 1, then the

image of any maximal vector of  T is a maximal vector of T.

Theorem 2.5.   Let  T £ H and let M  be the set of all maximal vectors

of T.   Then M  is convex.

Proof.   Let x, y e M  and let  a £ B.  Let w = ax + a'y .  Then  \w\ =

a\x\ + a \y\.  But |x| = \y\ = 1  so that  |«z| = a + a   = 1.  And since  Tw =

aTx + a'Ty, \Tw\ = a|Tx| + a'|Ty|.   But  | Tx| = |Ty| = \T\   so that  \Tw\ =

a\T\ + a'\T\ = \T\.  Thus,  w £ M  and M is convex.

Theorem 2.6. Let T be a selfadjoint linear endomorphism with \T\ = 1-

Let M = \Xx: A £ B and x £ M\. Let S be the restriction of T to M . Then

S is an isometry.

Proof. From the remark following Theorem 2.4, we have that if x e M,

T2x £ M so that |T2x| = \T\ = 1. By Lemma 2.3, T2x = Ax for some \ £ B.

Thus, 1 = |T2x| = A|x| = A.  So T2x = x for any x £ M.

Now let y e M*, say y = Ax.   Then  T2y = T2(Ax) = AT2x = Ax = y.   Thus,

T y = y for all y £ M'   so that S    = I and S  is a bijection.

If x, y £ M', then  \x - y\ = \S(Sx) - S(Sy)\ < \Sx - Sy\ < \x - y\   and

hence   \Sx - Sy\ = |x — y\.

Definition. Let T be an adjointable linear endomorphism. Then T is

said to be normal if and only if   TT* = T*T.

We now show that a vector which is an eigenvector of both T and T*

has the same eigenvalues with respect to both transformations. Further, if

T is normal, we show that  T and T* have the same eigenvectors.

Theorem 2.7.   Let  T be adjointable and suppose x  is an eigenvector

of both  T and  T*.   Then  Tx = T*x.

Proof. If Tx = ax and T*x = ßx, then a\x\ = (x, Tx) = (T*x, x) = ß\x\

and hence ax = ßx.

Lemma 2.6. Lei T be an adjointable linear endomorphism. Then T is

normal if and only if \Tx\ = |T*x|  for all x in V.

Proof.  If T is normal, |Tx| = (Tx, Tx) = (x, T*Tx) = (x, TT*x) =

(T*x, T*x) = |T*x|.  Conversely, by Lemma 2.2 it follows that iTT*g, h) =

iT*g, T*h) = 0 and iT*Tg, h) = (Tg, Th) = 0 for g 4 h.   For g = h, ÍTT*g,g)

= (T*g, T*g) = iTg, Tg) = (T*Tg, g) by hypothesis. Hence TT* = T*T.

Corollary. // T z's normal, then T and T* have the same maximal vec-

tors.
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Proof.  Let x be a maximal vector of T.  Then |x| = 1  and  \T*\ = \T\ =

\Tx\ = |T*x|.  Thus, x  is a maximal vector of T*. Similarly, any maximal

vector of  T*  is a maximal vector of  T.

Theorem 2.8.  // T is normal, then  T and T* have the same eigenvec-

tors, and hence the same eigenvalues.

Proof.  Let x be an eigenvector of T.  We know then that   Tx - |Tx|x so

that   T*Tx = T*(|Tx|x) = |Tx|T*x.  By Lemma 2.3, T*Tx = Ax for some A £ B.

And since   T is normal, |Tx| = |T*x|   (Lemma 2.6).   Thus, Ax = |Tx|T*x =

|T*x|T*x = T*x  and  so x  is an eigenvector of T*.  Similarly, every eigen-

vector of  T*  is an eigenvector of  T and it now follows from Theorem 2.7

that  T and  T*  have the same eigenvalues.
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